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ANALYSIS OF SURFACE ABLATION OF NONCHARRING MATERIALS 

WITH DESCRIPTION OF ASSOCIATED COMPUTING PROGRAM 

By Fred W. Matting and Dean R.  Chapman 
Ames Research Center 

A generalized method i s  presented f o r  solving the  problem of stagnation- 
point  heat  t r a n s f e r  and material response for b lun t  bodies experiencing m e l t -  
ing and vaporizing or subliming ablat ion.  
wind-tunnel and f l i g h t  conditions (with body forces  taken in to  account) ; i n t e r -  
n a l  r ad ia t ion  can be considered or t he  material can be assumed opaque; t h e  
ana lys i s  can be used f o r  d i f f e r e n t  p lane ts .  
s tar t  i n  t h e  free-molecule regime, pass  through a t r a n s i t i o n a l  regime, and 
f i n i s h  i n  the  continuum regime of gas dynamics. Approximate equations, 
r a t i o n a l l y  obtained, a re  presented which provide "bridges" between the  f ree-  
molecule and continuum regimes f o r  such quan t i t i e s  as the  convective heating 
r a t e ,  surface shear,  heat  blockage, and mass loss. Several  i l l u s t r a t i v e  exam- 
p l e s  ( including surface chemical reac t ion  cases) show the appl icat ions of the  
analysis .  Comparisons with experiment a re  made where possible .  The ana lys i s  
has been machine programmed f o r  numerical solut ions using a f i n i t e  difference 
scheme, and a running energy balance i s  kept as a check on accuracy. 
t i ons  are provided f o r  using the  computing program. 

The ana lys i s  i s  appl icable  t o  

During e n t r y  f l i g h t s ,  a body w i l l  

Ins t ruc-  

INTRODUCTION 

The development of heat sh ie lds  f o r  space vehicles  and long-range 
missi les  has motivated a marked increase i n  the e f f o r t  t o  understand the  pro- 
cess  of ab la t ion .  This i n t ens i f i ed  study i s  contr ibut ing t o  the  understanding 
of na tu ra l  ab la t ive  phenomena t h a t  occur when e x t r a t e r r e s t r i a l  bodies en te r  
the  Ear th ' s  atmosphere. Ablation da ta  obtained i n  the  laboratory,  f o r  example, 
i n  a r c - j e t  wind tunnels,  do not dupl icate  i n  any s ingle  experiment a l l  t he  
conditions of en t ry  f l i g h t s ;  hence, t he re  i s  need Tor  ana ly t i ca l  methods of 
predict ing and explaining the  ab la t ive  phenomena. Before such methods can be 
applied,  however, t h e i r  v a l i d i t y  and accuracy must be determined by comparing 
calculated r e s u l t s  with r e s u l t s  from wind-tunnel t e s t s ,  with f l i g h t  data ,  or 
with pos t - f l i gh t  observations of a man-made or na tu ra l  ob jec t  when one can be 
re eo ve r e d . 

A generalized method i s  presented here f o r  solving the  combined problem 
of heat  t r a n s f e r  and material response f o r  t he  s tagnat ion region of b lun t  
bodies experiencing melting and vaporizing o r  subliming ablat ion.  An attempt 
has been made t o  describe the problem mathematically as completely as possible  
i n  order  t o  ob ta in  near ly  exact  solut ions.  This required t h a t  t he  ana lys i s  be 
machine programed f o r  numerical so lu t ions .  This program i n  various s tages  of 



development has been used successful ly  a t  Ames Research Center during the  
pas t  th ree  years. 
ab la t ion  (refs. 1, 2 ) .  

It has previously been employed i n  the  ana lys i s  of t e k t i t e  

A number of t he  equations used i n  the  ana lys i s  are already w e l l  
e s tab l i shed  (refs. 3-6); however, some of t he  equations and features of t h e  
ana lys i s  are new. The ana lys i s  takes  account of t h e  f a c t  t h a t  en t ry  bodies 
i n i t i a l l y  f l y  i n  the  free-molecule regime, then i n  a t r a n s i t i o n a l  regime, and 
f i n a l l y  i n  the  continuum regime of gas dynamics. The ana lys i s  contains f o r -  
mulas f o r  the  t r a n s i t i o n a l  regime t o  br idge between t h e  free-molecule and 
continuum regimes; these formulas have been r a t i o n a l l y  derived from simple 
models and are bel ieved t o  f i l l  an important gap i n  previous analyses of small 
objec ts  en ter ing  a planetary atmosphere. 

Several  options i n  the  ana lys i s  and associated computing program are 
avai lable .  I n t e r n a l  r ad ia t ion  i n  the  body i s  accounted f o r ,  or t he  body can 
be assumed t o  be opaque. F l igh t  cases as w e l l  as wind-tunnel cases can be 
ca lcu la ted ;  the  f l i g h t  cases  can be applied t o  any p lane t ,  provided c e r t a i n  
c h a r a c t e r i s t i c s  of t h e  atmosphere are known. The rear boundary conditions f o r  
the  ab la t ing  material can be those f o r  a heat  sh ie ld ,  or t he  aerodynamic base 
heating f o r  an object ,  such as a t e k t i t e ,  can be accounted f o r .  The ab la t ing  
material can be a type t h a t  m e l t s  and/or vaporizes,  sublimes, o r  undergoes a 
surface chemical reac t ion  i n  the  ab la t ion  process.  The various material prop- 
e r t i e s  and the ex te rna l  flow conditions can be put i n to  the  computing program 
a r b i t r a r i l y  so t h a t  a variety of ab la t ion  research  problems can be studied. 

To i l l u s t r a t e  t he  types of problems t h a t  can be handled by the  ana lys i s  
(and t o  e luc ida te  some of  t he  s ign i f i can t  ab la t ive  phenomena), severa l  t y p i c a l  
examples are  presented. These are ca lcu la ted  by the  numerical computing pro-  
gram associated with the  analysis .  The p r i n c i p a l  features o f  the  numerical 
computing program are described, and in s t ruc t ions  are given f o r  i t s  use. 

ANALYSIS AND METHOD OF SOLUTION 

I n  t h i s  sect ion,  t he  p r inc ipa l  emphasis i s  on t h e  method of so lu t ion  
used i n  t h e  associated computer program. Equations a re  presented i n  spec i f i c  
form with numerical values inser ted  f o r  un ive r sa l  constants.  I n  performing 
ca lcu la t ions  f o r  various materials and s i tua t ions ,  the  user  has a number of 
parameters (constants)  a t  h i s  disposal ;  t y p i c a l  values of these are  l i s t e d  i n  
the  descr ip t ion  as they appear. 

Basic Approach and Approximations 

The analysis  i s  concerned with the  problem of surface ab la t ion  near the  
s tagnat ion point  f o r  t ransparent  o r  opaque mater ia l s  of f i n i t e  thickness.  The 
ana lys i s  i s  thus r e s t r i c t e d  t o  materials t h a t  undergo surface ab la t ion  includ- 
ing melting, evaporation, sublimation, or surf ace chemical react ions,  such as 
depolymerization. Chemical reac t ions  involving t h e  ex te rna l  gases are not 
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considered. The boundary-layer equations,  as such, are not solved, bu t  
results of known so lu t ions  are used t o  obta in  heat ing rates, surface shear,  
and the  e f f e c t s  of mass t r a n s f e r .  Front and back surface heat ing rates must 
be solved f o r ,  i n  order  t o  determine the f r o n t  and back face boundary condi- 
t i ons .  Two types of heat ing environments are t r ea t ed .  One i s  of constant 
ve loc i ty  and stream density,  such as genera l ly  exists i n  an arc-heated wind 
tunnel ;  t h e  o ther  i s  of time-varying ve loc i ty  and dens i ty  over an e n t r y  f l i g h t  
(using a constant l i f t / d r a g  r a t i o  bu t  a var iab le  mass). 
ronment, t he  equations of motion are solved simultaneously with the  heat- 
t r a n s f e r  and ab la t ion  equations.  I n  the  equations of motion, t he  r a t i o  of 
body mass t o  t h e  product of drag coef f ic ien t  by f r o n t a l  area appears, and t h i s  
i s  r e l a t e d  (empir ical ly)  t o  the surface recession.  

I n  t h i s  l a t te r  envi- 

Conservation Equations 

The ana lys i s  i s  e s s e n t i a l l y  a time-dependent energy balance along the  
s tagnat ion center  l i n e  of an axisymmetric b lun t  body. The bas i c  equations t o  
be solved are the  conservation equations f o r  energy, mass, and momentum f o r  
the material of the  body, wr i t t en  i n  a s implif ied form t h a t  i s  v a l i d  i n  the  
s tagnat ion region. The energy and momentum equations have been f u r t h e r  s i m -  
p l i f i e d  by neglecting i n e r t i a l  t e r m s ;  t h i s  procedure i s  a va l id  approximation 
f o r  viscous ab la t ive  materials, such as g lass ,  stone, or any subliming mate- 
r i a l .  The cu rv i l i nea r  coordinate system used i s  shown i n  sketch (a;. The 

conservation equations are : 

Energy 

pc (”’ s + v -  - aT) = a [JS - F(y, t )]  ay a Y  

where F ( y , t )  i s  the i n t e r n a l  r ad ia t ion  
f l u x  t e r m .  

Sketch (a )  

Continuity ( f o r  constant densi ty)  

x Momentum 

- aii + u - + - = o  - av 
ax x ay 

Most previous analyses have taken account of i n t e r n a l  r ad ia t ion  or vehi- 
c l e  accelerat ion,  but  not  both.  The acce lera t ion  t e r m  i n  the  momentum equa- 
t i o n  (3) can b e  important i n  determining the  rate of removal of melted 
material; t h i s  t e r m ,  as wri t ten,  i s  v a l i d  i n  the  s tagnat ion region. 

3 

b 



The cont inui ty  and momentum equations can be put in to  quadrature form. 

Then, near the  center  l i n e  
We make use of t h e  fact  t h a t  E varies l i n e a r l y  w i t h  x near the  s tagnat ion 
center  l i ne ,  and we def ine:  E = ( & T / / ~ X ) ~ = ~ .  

The cont inui ty  equation i n  quadrature form i s :  

PY 

The value of 
e m l u a t i o n  i s  described below i n  the  sect ion,  Front Face Velocity.  The sur -  
face  recession rate and surface recession are, respect ively,  

Tw depends on surface temperature and ex te rna l  conditions;  i t s  

Pressure Gradient 

The so lu t ion  t o  equation (5 )  can be subs t i t u t ed  in to  equation (l), bu t  t o  
solve equation ( 5 )  w e  must f i r s t  obta in  
We write, f o r  t he  pressure near t he  center  l i n e ,  

??(y,t) from t h e  momentum equation. 

and equation (3) becomes, a f t e r  subs t i t u t ing  equation (4), 

where 
cor rec t ion  f o r  t he  body force  ac t ing  on t h e  material. 
t i o n  (8) twice and obtain:  

p" i s  then t h e  negative of t h e  second der iva t ive  of pressure with a 
W e  can in tegra te  equa- 

where T ~ '  (dynes/cm3) i s  the  x der iva t ive  of the  absolute value of the 
surface shear, (d-rw/dx)x=o. I n  p" t he  quant i ty ,  a, i s  the  accelerat ion of a 
body i n  f l i g h t  (pos i t i ve  f o r  increasing speed) . For wind-tunnel ca lcu la t ions  

4 



a = -g f o r  a v e r t i c a l  wind tunnel  wi th  upward flow and a = 0 f o r  a 
hor izonta l  wind tunnel.  
evaluated as follows: 

I n  the  ca lcu la t ions  t o  be made, P "  (dynes/") i s  

Wind tunnel:  

F l igh t :  

6 ' '  = (A2 - E15R) 

where 
Newtonian approximation, 

A2 (approximately un i ty )  i s  a cor rec t ion  used with a modified 

and E15 i n  equation ( loa)  i s  se lec ted  t o  give the  wind-tunnel body f o r c e .  
The quantity,  KtU, i s  an empirical  co r rec t ion  f o r  o s c i l l a t i o n  o r  tumbling i n  
f l i g h t .  It i s  evaluated as 

where 
approximately stagnation conditions,  and X, and E16 a re  values se lec ted  t o  
give a r e a l i s t i c  damping t o  the  o s c i l l a t i o n  during en t ry .  Typical values f o r  
t he  constants t h a t  have been used f o r  ca l cu la t ing  a tumbling t e k t i t e  en t ry  are: 
E = 0.25; X1 = R/10 em; E l 6  = 1.0.  
t he  other constants have no influence.  

E i s  the  f r a c t i o n a l  time t h a t  t h e  center  po in t  i s  i n i t i a l l y  exposed t o  

For a nontunibling body, f? i s  u n i t y  and 

Surface Convective H e a t  Transfer 

I n  order t o  evaluate t h e  x grad ien t  of w a l l  shear, T ~ ' ,  we requi re  
f i rs t  an evaluation of t h e  surface convective heat t r a n s f e r ;  we a l s o  need t h i s  
t o  determine the  surface boundary conditions.  
we use an "enthalpy ve loc i ty"  (km/sec), which i s  defined as 

Instead of enthalpy ( ca l /g ) ,  

V2 = 0.00836 hs 



For the  ex te rna l  gas we use an average spec i f i c  heat ,  

I n  laminar continuum flow we can evaluate the surface convective heat  t r a n s f e r  
as (ref. 7) (with a v o r t i c i t y  cor rec t ian)  

where A4 i s  a constant and C 6  i s  a v o r t i c i t y  cor rec t ion  (genera l ly  s m a l l ) .  
The r e s u l t s  of equation (1.5) agree w e l l  wi th  e x i s t i n g  experimental da ta  over 
an extended range of enthalpy po ten t i a l s .  The value of A4 fer Ear th  e n t r i e s  
i s  approximately 1.1; i n  wind-tunnel t es t s ,  A4 i s  evaluated with a calorim- 
e t e r .  With a blowing cor rec t ion  we have 

qqc = $%c 

where $ i s  evaluated i n  equation (28) .  

For high a l t i t u d e  f l i g h t  o r  f o r  r a r e f i e d  wind-tunnel conditions,  it i s  
necessary t o  consider t he  free-molecule regime. For surface convection i n  
the  free-molecule regime w e  use a Newtonian type of approximation ( re f .  8, 
PP- 395-403). 

AcqDV- 
- (V' - 0.00836 FpTw) q~~ - 0.0836 

I n  the t r a n s i t i o n  regime between free-molecule and continuum flow, the  con- 
vect ive heat t r a n s f e r  will have a value bridged between the  evaluations i n  
equations (16) and (17). This has been derived from a simple k ine t i c  theory 
model (see appendix C )  y ie lding the  r e s u l t  

When the  tumbling cor rec t ion  i s  applied, t he  convective heat  t r a n s f e r  a t  the 
f r o n t  w a l l  i s  

qw = qq&u 

Equations (15) t o  (19) a re  used t o  determine the  convective heat  t r a n s f e r  
t o  the  f r o n t  face,  bu t  it i s  a l so  of i n t e r e s t  t o  ca l cu la t e  some r e l a t e d  quan- 
t i t i e s .  When no material i s  being l o s t  t o  t he  vapor state, $ = 1, and 
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equation (18) spec ia l izes  t o  

s o  = s c  (. - e -qm/".c) 

and equation (19) spec ia l izes  t o  

When mater ia l  i s  l o s t  t o  the vapor s t a t e ,  J, $ 1; we can consider t h a t  
operates on qoc bu t  not on qFM. Then a modified $ can be obtained t o  
operate on %,. 

$ 
- 

We define the  modified blowing f ac to r ,  $, as: 

On multiplying both sides of equation (22b) by qu, we have a l so  

qw = F9, (23) 

When we subs t i t u t e  equations (16), (18), and (20) in to  (22a),  the  evaluation 
of $ becomes 

- 

\I' ( 1 - e  -~FM/*%~) 

Equations (20) t o  (24) a re  a l t e rna te  forms e n t i r e l y  equivalent t o  equa- 
t i ons  (18) and (19). 
determining the  convective heat t r ans fe r ,  are computed as quant i t ies  of 
i n t e r e s t  conceptually. 

The quan t i t i e s  9o0, qo, and 37, although not needed i n  

The bridging r e l a t i o n  given i n  equation (18) or the  a l t e rna te  forms i n  
equations (20) and (24) w i l l  automatically take account of changes of  heating 
r a t e s  as a body f l i e s  f r o m  one regime in to  another and will place cont ro l  i n  
the  appropriate regime. Comparisons with avai lable  measured data  a re  shown 
i n  appendix C .  

For normal (nonraref i ed )  wind-tunnel conditions, the  bridging r e l a t ions  
given above are not needed; a l s o  there  i s  no turtibling, so we have simply: 

7 



F =  J ,  

I n  the hea t - t ransfer  r e l a t ions  given above from equation (1.5) t o  equa- 
To evaluate J , ,  we need t o  t i o n  (25) ,  t he  blowing parameter, J , ,  i s  needed. 

know the  r e l a t ionsh ip  between the  equilibrium vapor pressure and temperature 
f o r  t he  ab la t ing  mater ia l ,  pve = pve(Tw). We will write  

where 
sh i f t ed  by the  presence of other gaseous mater ia ls  i n  the boundary layer .  A n  
example of t h i s  i s  the  suppression of  vaporization of s i l i c a  due t o  the  pres-  
ence of oxygen i n  the  atmosphere. This suppression e f f e c t  f o r  s i l i c a  i s  
analyzed i n  reference 9 in  which an ana ly t ic ,  bu t  impl ic i t ,  expression i s  
obtained f o r  the  modified equilibrium vapor pressure.  The use of the exponent, 
E7, i s  an empirical  accounting f o r  t h i s  e f f e c t  which y ie lds  values within 
severa l  percent of  t he  values obtained by t h e  rigorous analysis  of reference 9. 
For s i l i c a ,  t he  value E7 = 1 . 4  has been used. 
r i a l s ,  E7 = 1, o r  the  modified equilibrium vapor pressure i s  the usual  equi- 
l ibrium value. 
(twice the  free-stream dynamic pressure with a correct ion f ac to r )  : 

p, i s  the  modified equilibrium vapor pressure when the equilibrium i s  

For a number of other mate- 

pt2 ( i n  atmospheres) we use a hypersonic approximation For 

where a t y p i c a l  value f o r  AI i s  0.95, and the  number, 101.3, accounts f o r  
t he  u n i t s  i n  the  equation. 
conditions; P 
which w i l l  not be an equilibrium value, bu t  i n  the  l i m i t  pv approaches pvm 
f rom below. However, pv cannot exceed pt2, so f o r  t h i s  equation, whatever 
value p may ac tua l ly  take, i t  i s  not allowed t o  exceed pt2 i n  equa- 
t i on  (26y This has been done by giving P 
pos i t ive  number So P i s  defined by equation (26) down t o  i t s  lower 
l i m i t .  The quan t i t i e s ,  pv, pve, p,, p t2,  and P, are  considered t o  be 
evaluated a t  t he  l iqu id  o r  s o l i d  surface.  

Equation (26) i s  a l imi t ing  form f o r  continuum 
could be based on the ac tua l  ex i s t ing  vapor pressure, pv, 

a lower l i m i t  which i s  a small 

We can represent J ,  f o r  an evaporation o r  sublimation process as  

I f =  



This r e l a t ion ,  with the  asymptote, E35 = 0.06, gives a good f i t  t o  a number of 
boundary-layer so lu t ions  ( refs .  10-12). Equation (28a) i s  a l so  a l imi t ing  
form f o r  continuum conditions s ince 
based on the  a c t u a l  vapor pressure,  pv. 
t he  mass loss ra te  due t o  vaporizat ion (see eqs.  (38),  (39a), and (40) below). 
For a surface chemical r eac t ion  we use the form 

P, as evaluated i n  equation (26) ,  i s  not 
The quant i ty  l / P  i s  a funct ion of 

where 
The cor rec t ion  using Twc and T x ~ ~  t akes  account of t h e  possible  reac t ion  
rate con t ro l  of t he  m a s s  loss ra te  which does not depend on the (modified) 
equilibrium vapor pressure (eqs.  
t i o n  (28) (0.95-1.55 used), depends on the  r a t i o  of molecular weights of ex te r -  
n a l  gas t o  blowing gas and should preferably be determined by experiment. 
t he  absence of experiment, w e  can est imate  B11 as follows. W e  can define 

Twc and T w ~ ~  are shown evaluated velow i n  equations (38) and (39e). 

(39e) and ( 4 0 ) ) .  The quant i ty ,  B11 i n  equa- 

I n  

- %  
mv 

M = -- 

and we have 

constant 

M 
B11 = -n 

where t h e  constant 0.7 t o  0 .8  and n w 2/3 t o  3/4. 

W a l l  Shear Gradient 

We are  now i n  pos i t i on  t o  evaluate the  x gradient  of t he  w a l l  shear,  

Using a modified form of Reynolds 
T ~ '  = (d-i-w/dx)x,o. 
ing t o  evaluate  
analogy, w e  can wr i te :  

W e  f i r s t  consider t he  case of continuum flow with no blow- 
-rO1 = (dI-o/dx)x,o. 

where K, 
t he  Prandt l  number i s  un i ty .  

i s  a constant t h a t  depends on the  Prandt l  number and i s  u n i t y  when 
Using equation (11) w e  ob ta in  

9 



To1 = 
R ( O h ) J G  

where 
correction, Ktu ,  ( eq .  (12))  t o  

A3 e 1.45  i s  a typ ica l  value. 
rO1 

W e  apply the  tumbling o r  o sc i l l a t ion  
and obtain 

For the  e f f e c t  of blowing on w a l l  shear i n  continuum flow we use ( r e f .  11) 

- $  1+% Twc 
- -  Toc ' ( P $ )  (34) 

The value of  E8 should be small; unless  experimental evidence i s  avai lable ,  
it i s  suggested t h a t  the value zero be used. (Reasonable answers have a l so  
been obtained with E8 = 0.3 Bll.) I n  the  numerical computing program, the 
value of  P t h a t  i s  inser ted  in to  equation (34) (only) i s  a r b i t r a r i l y  pre-  
vented from becoming l e s s  than Ea so t h a t  the  shear blowing f ac to r  cannot 
become u n r e a l i s t i c a l l y  large when the  ac tua l  P i s  very small. Using equa- 
t i ons  (32b, 33, and 34),  we obtain our expression f o r  -rWc' i n  continuum 
f l o w .  

TWC1 = 

For the  x gradient  of 

- 

(35) 8%A3qocv&kt[-1.?. _(Ea/P)$ 1 
R& (V" - 0.00836 FpTw) 

shear i n  f r e e  molecule f l o w  (which i s  unaffected 
by blowing), we have ( r e f .  8, pp. 395-403) 

where A,, i s  the  x momentum accommodation coe f f i c i en t .  For the  bridging 
between free-molecule and continuum w a l l  shear, we use e s s e n t i a l l y  the same 
model as t h a t  used for heat- t ransfer  bridging (see  appendix C )  . 

The evaluations of 
temperature d i s t r ibu t ion  enable us t o  solve equation (9) f o r  
can be subs t i tu ted  in to  equation ( 5 ) .  

P" and T ~ '  given above along with knowledge of the  
C(y , t )  which 

10 



I" 

Front Face Velocity 

- 
To solve equation (5 )  we need t o  evaluate the  f r o n t  face  veloci ty ,  vw. 

For the f r o n t  f ace  ve loc i ty  under continuum conditions,  w e  use the  so-cal led 
L e w i s  analogy (Le  = l), which states t h a t  the r a t i o  of mass d i f fus ion  t o  con- 
cent ra t ion  "gradient" i s  equal  t o  t h e  r a t i o  of continuum heat t ransfer  t o  
enthalpy po ten t i a l :  

An equivalent form of equation (38) i s  given as equations (31) and (32) of 
reference 9 (see a l so  ref .  13).  Equation (38) i s  a l imi t ing  form f o r  contin- 
uum conditions,  because of the way P i s  evaluated i n  equation (26) .  (AS 
noted previously, P 
t i o n  (38) a l so  contains empiricism i n  t h e  evaluat ion of + (eq. ( 2 8 ) ) .  I n  
r e a l i t y ,  it i s  expected t h a t  the d i f fus ion  rate should reach a maximum value 
with a very s m a l l  P, i f  P w e r e  based on the a c t u a l  pressure a t  t he  surface,  
p,. This would a l so  requi re  t h a t  t h e  + asymptote be  zero. With a f i n i t e  + asymptote (which seems t o  f i t  e x i s t i n g  da ta ) ,  the  ca lcu la ted  d i f fus ion  
r a t e  becomes u n r e a l i s t i c a l l y  la rge  f o r  small P. Under these conditions it 
can be expected t h a t  free-molecule o r  reac t ion- ra te  con t ro l  w i l l  general ly  
p r e v a i l  ( s ee  eq. (40)), so tha t  an inaccurate  ca lcu la t ion  of  t he  d i f fus ion  
rate f o r  these conditions w i l l  have l i t t l e  e f f e c t  on the n e t  rate ca lcu la ted .  

i s  evaluated a t  the  s o l i d  o r  l i qu id  surface.) Equa- 

For t h e  ca lcu la t ion  of t he  f r o n t  f ace  ve loc i ty  i n  the  free-molecule or 
ra te -cont ro l led  regime, we d i s t i ngu i sh  two cases:  
t ion ,  and (2)  a chemical reac t ion  such as a depolymerization. For t h e  evapo- 
r a t i o n  o r  sublimation case, we have, from k i n e t i c  theory, the  Langmuir 
equation ( C l ) .  

(1) evaporation or sublima- 

With constants evaluated t o  account f o r  our u n i t s  we have: 

Using equation (29) we write 

W e  now use 

and ge t  



Equation (39d) i s  the  form we use i n  our ca lcu la t ions .  
weight m, of t he  ex te rna l  gas i s  29.1, the accommodation coe f f i c i en t  can be 
used d i r e c t l y  i n  equation (39d) ; otherwise the accommodation coe f f i c i en t  must 
be corrected according t o  equation (39c) .  

When the  molecular 

For the  chemical r eac t ion  case, we use an Arrhenius rate form f o r  a f i r s t  
order  reac t ion  

I n  the  coordinate system used, bo th  Twc and T w ~ ~  w i l l  be negative quant i t ies .  
The br idging equation between the  free-molecule o r  reac t ion- ra te  control led 
regime and the  continuum o r  d i f fus ion  cont ro l led  regime turns  out  t o  be (see 
appendix C ) :  

The use of equation (40) automatically places  the  f r o n t  f ace  ve loc i ty  i n  the  
appropriate cont ro l l ing  regime : the  diffusion-control led,  the  rate-contr3lled,  
o r  the t r a n s i t i o n a l  regime. 

I n t e r n a l  Radiation 

I n  the energy equation (l), we requi re  the  evaluat ion of t he  i n t e r n a l  
r ad ia t ive  f lux,  F(y, t ) .  I n  the  evaluat ion of F, we assume e i t h e r  an opaque 
body (F 
incoming gas cap rad ia t ion ,  another f o r  t he  absorption-emission of t he  heat-  
sh i e ld  material). 
body by a semitransparent body t h a t  i s  opaque in t e rna l ly ,  but  has a var iable  
surf ace e m i  s s i.vity . 

0) o r  a t ransparent  gray body (two shades of gray; one f o r  t he  

A t h i r d  a l t e rna t ive  i s  t o  approximate the  t ransparent  gray 

The evaluat ion of t h e  r ad ia t ive  f l u x  f o r  t h e  gray t ransparent  body i s  
given below; it i s  similar t o  t h a t  of reference 1 4  which treats sca t t e red  
rad ia t ion  and uses  an exponential  a t tenuat ion .  The present  evaluat ion con- 
s ide r s  one r e f l e c t i o n  from t h e  f r o n t  and the  rear surfaces,  which i s  a good 
approximation f o r  mater ia l s  t h a t  absorb w e l l .  
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qR + -  2n2ao 

Reff i s  the  e f f ec t ive  
r e l a t ed  t o  the m a x i m  

coe f f i c i en t  of r e f l ec t ion  f o r  planar rad ia t ion  and i s  
emissivi ty  by the  re la t ionship  ( r e f .  15) 

The second-degree exponential i n t e  r a l  
t i o n  i n  the in tegra ls  of equation 741) , i s  ( r e f .  16, appendix I) : 

E 2 ( z ) ,  used as  the  at tenuat ion func- 

I n  ac tua l  numerical calculat ions,  equation (41) i s  used d i r e c t l y  t o  evaluate 
F a t  the f ron t  and back faces  only.  
taking the der ivat ive of equation (41 ) ,  and i s  numerically evaluated f o r  
use i n  equation (1). I n t e r n a l  values of - F are then obtained by numerical 
quadrature of the f l u x  der ivat ive,  g .  The gas cap rad ia t ive  f lux ,  qR, i s  
evaluated with an empirical  approximation: 

The quantity,  g = aF/ay, i s  obtained by 
g 

The fo rm of equation (44)  i s  deduced f rom experimental cor re la t ions  presented 
i n  reference 17. Input constants E4, Eg, and E6 f o r  a given environment 
should be selected t o  f i t  avai lable  data .  The l e v e l  of  rad ia t ion  and the  
surface r e f l e c t i v i t y  are  both accounted f o r  i n  the evaluation of E4; E5 can 
vary from 0 . 5  f o r  nonequilibrium radia t ion  t o  1 .7  f o r  equilibrium radia t ion  
i n  a i r ,  while E6 can vary f r o m  5 t o  8 f o r  air .  
selected,  E, should be chosen t o  give the  proper l eve l  of rad ia t ion .  Values 
of t he  constants t h a t  have been used f o r  Earth t e k t i t e  e n t r i e s  are:  
E4 = 0.76x10-~; E5 = 0.5; E6 = 7.0. 

After the exponents a re  

I n  the  ca lcu la t ion  f o r  a semitransparent body, the  mater ia l  i s  considered 
t o  be in t e rna l ly  opaque, and the  f r o n t  surface emissivi ty  i s  varied i n  an 
appropriate manner with the thermal thickness of the  temperature p r o f i l e .  
T h i s  v a r i a t i o n  i s  derived by assuming an exponential  temperature d i s t r ibu t ion  



near the w a l l .  This permits a closed form in tegra t ion ,  and the  r e s u l t  i s  
fu r the r  approximated t o  the following simple form: 

where 
t i o n  (63). i s  assigned the value of 
E-.) With t h i s  representation, the  back-face emiss iv i ty  EBF i s  assumed t o  
be constant and F 0. The semitransparent approximation gives v i r t u a l l y  
the  same r e s u l t s  f o r  most ab la t ion  cha rac t e r i s t i c s  as  the  transparent case 
(see t ab le  I ) ,  although the  i n t e r n a l  temperature p r o f i l e s  do not agree closely. 
It g rea t ly  reduces computing machine time, however; hence it i s  used f o r  most 
calculat ions when an accuracy of the order  of 10 percent i s  adequate. 

E33 = 2.4/a and the  thermal thickness,  A, i s  evaluated i n  equa- 
(If (aT/&y), L 0 or A <_ 0, then EFF 

Boundary Conditions 

The evaluations of  a l l  the  terms i n  t h e  energy equation (1) have been 
shown, so  t h i s  equation i s  i n  a form t o  be solved f o r  Boundary con- 
d i t i ons  are needed f o r  equation (l), and these are  determined i n  the  standard 
manner by wri t ing surface energy balances f o r  the f r o n t  and back surfaces,  
providing f o r  the appropriate differences between the opaque and transparent 
cases.  Options a re  provided i n  determining the  rear surface boundary 
conditions as shown below. 

T(y , t ) .  

The energy balance f o r  the  f r o n t  surface i s  wr i t ten :  

where 

B16 = 0 f o r  the  opaque and semitransparent cases 

BL6 = 1 f o r  the  transparent case 

I n  the coordinate system used, the f r o n t  face  remains a t  the  or ig in .  A s  
mater ia l  i s  l o s t ,  t he  locat ion of t he  back face  recedes t o  smaller values of  
YBF, o r  the  region i n  which we are  solving equation (1) becomes smaller. 
t o  know the locat ion of the back face,  a t  any time, t, the  system of equations 
Must have been solved up t o  time, t .  

So, 

I n  wri t ing the  back surface energy balance, we d i s t inguish  between a 
back surface exposed t o  f l i g h t  conditions and a back surface i n  contact with 
a backing mater ia l .  
f o r  example, with a t e k t i t e ) ,  we wri te  the  following back surface energy 
balance : 

For the  back surface exposed t o  f l i g h t  conditions (as, 
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where B16 i s  zero or u n i t y  as noted above. The back surface convective heat  
t r ans fe r ,  qBF, may be a funct ion of surface temperature. W e  re la te  qBF t o  
the  f r o n t  surface convective heat  t r a n s f e r  (without blowing) , qo, empir ical ly  
as follows : 

where R B ~  
heating when normalized by the  respect ive enthalpy po ten t i a l s .  
t r a n s i t i o n  t o  turbulen t  f low a t  the  base,  we use: 

i s  defined as the  r a t i o  of base t o  f ront - face  laminar convective 
To account f o r  

qBF turbulen t  - 
- qBF laminar (49) 

1 - _ _  - 0.2 ~ - 
- D V R )  

- 0.2 

(at t r a n s i t i o n  

(50) 1 t rans  it ion 

E13 = 
C”wRe t r an s it ion ( D ~ o + )  ( v,105) 2% 

Typical values of constants  t h a t  have been used f o r  t e k t i t e  e n t r i e s  are: 
RB/F = 0.01; E l 3  = 0.01; E l 9  = 5.0.  
assigned the value zero, the  back boundary condition i s  ad iaba t ic .  

When the  quan t i t i e s ,  RB/F and EBF, are 

For numerical computations of t h e  t ransparent  case, t h e  computing program 
has been arranged so t h a t  it i s  possible  t o  modify equations ( 4 6 )  and (47) by 
assigning some rad ian t  energy t o  t h e  surface energy balances.  The reasons f o r  
t h i s  are explained i n  the  sect ion,  METHOD OF TKF: NUMERICAL PROGRAM, Boundary 
Conditions f o r  the Transparent Case, equations (97) and (98) .  

The o ther  back boundary condition of i n t e r e s t  i s  used f o r  heat-shield 
ca lcu la t ions .  W e  assume a backing material which a c t s  as a heat  s ink  and i s  
a t  uniform (but  increasing)  temperature, TBF. For an opaque heat  sh i e ld  the  
heat  t r a n s f e r  i s  e n t i r e l y  by conduction t o  the  backing material; f o r  a t r ans -  
parent  heat  shield,  we assume that,  i n  addi t ion t o  conduction, t h e  r ad ia t ive  
flux, F(yBF,t) i s  e n t i r e l y  absorbed by the backing material. Then, i n  place 
of equations (47) t o  (50) we write 

- 
where c i s  the  heat  capac i ty  per u n i t  area of the backing material. I n  the  
l imi t ing  case with F = 0, t h e  back boundary condition i s  adiabat ic ,  and 



equation (51) should be replaced by equations (47) and (48) with 
€BF assigned the  value zero. 

R B / ~  and 

It should be noted t h a t  t he  surface temperatures genera l ly  cannot be 
spec i f ied  a p r i o r i ,  as they depend p a r t l y  on e x t e r n a l  conditions t h a t  may 
change with t i m e .  The computing program must "find" t h e  appropriate boundary 
conditions t h a t  s a t i s f y  the  p a r t i a l  d i f f e r e n t i a l  equation (1) and the  surface 
energy balances. 

Trajectory Equations 

For f l i g h t  we must solve simultaneously t h e  conservation equations and 
the  t r a j e c t o r y  equations of motion. We use t h e  two-dimensional t r a j e c t o r y  
equations (with var iab le  mass) f o r  e n t r y  i n  a meridional plane, as shown below 
( r e f .  18). 

v, =&FT7 

y = tan-' (z) 
= -  du 

d t  
- 

We a l so  use a hypersonic approximation t h a t  considers t he  ambient atmospheric 
enthalpy t o  have a constant value: 

V =Jn co (55a) 

E 3 8  = 0.00836 h, (5%) 

where 
and Es8 (an input t o  the  computing program) has the  u n i t s  km2/sec2. For 
Ear th  e n t r i e s ,  0.5 has been used f o r  ES8. 

h, i s  the  e f f ec t ive  average constant atmospheric enthalpy i n  cal/g, 
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Equations (53) and (54) can be solved numerically i n  a straightforward 
manner. has been taken as constant f o r  a given body. 
The atmospheric scale  height, Sh, has been programmed so t h a t  it may change a t  
selected values of atmospheric density,  D.  One computing option f o r  Earth 
e n t r i e s  provides automatic changes i n  Sh through three values t o  represent 
the ARDC atmosphere. For a r b i t r a r y  planet  en t r i e s ,  four  a r b i t r a r y  successive 
values of s h  can be used. (See appendix D . )  

A s  programmed, L/Dr 

The quantity,  M/C@ (g/cm2), must be evaluated f o r  use i n  equation (53) .  
The var ia t ion  of 
face recession, X .  This i s  equivalent t o  assuming a geometry f o r  t he  
recession shape : 

M/A has been set up empirically as  a function of the sur-  

The var ia t ion  of t he  drag coef f ic ien t ,  CD, through the  free-molecule, t r a n s i -  
t i ona l ,  and continuum regimes, i s  represented by a bridging equation developed 
i n  appendix C:  

where 

CDFM - CDC 
CDC 

E, = 

and E, depends on the  body shape. The free-molecule drag coef f ic ien t ,  
CDFM, may be given the  value 2 .  The parameter, E14, has some dependence on 
body shape (and f l i g h t  condi t ions) ,  but  w i l l  o f ten  be assigned the  value zero 
( the  value f o r  a sphere i n  a i r ) .  We combine equations (56) and (57) t o  obtain 

I n  t h i s  equation, CDC i s  shown grouped with the  i n i t i a l  value of 
because t h i s  i n i t i a l  quant i ty  i s  used i n  the  computing program. The empiri- 
cism i n  equation (59) can a l so  be used t o  account f o r  any change i n  
change of body shape. 

M/CDCA, 

CDC with 

M i  see llaneous Relations 

Nose rad ius . -  The e f f ec t ive  nose radius,  R, i s  calculated as a quant i ty  
t h a t  has an empir ical  va r i a t ion  with t h e  surface recession. 



It i s  desirable  t o  evaluate  the constants i n  equation (60) from experimental 
data .  Otherwise, one must estimate the  geometrical shape of the  ab la t ion  
surfaces.  

Density r a t i o  across normal shock. - I n  severa l  of t he  r e l a t ions  presented, 
the densi ty  r a t i o  across a normal shock, p21, appears. For wind-tunnel calcu- 
la t ions ,  p 2 1  i s  considered t o  remain constant f o r  a p a r t i c u l a r  case. The 
value of 021 i s  a port ion of the  input data f o r  these cases. For f l i g h t  
calculat ions,  p21 changes and must be continuously calculated.  For f l i g h t  
cases we use the equations: 

- PE = (2) - E l l  [(%)eq - 61 e -E 1zRV5D 
p21 - P, 

eq 

(g)eq = (18 - 12e ?) [l + 0.08 loglo 

Equations (61) and (62) a re  empirical  r e l a t ions  t h a t  give good f i t s  t o  data  
f o r  a i r .  Equation (61) accounts f o r  nonequilibrium e f fec t s ,  while equa- 
t i o n  (62) f i t s  equilibrium air  data, such as  presented i n  reference 19. 
equations provide a va l id  approximation f o r  any gas mixture t h a t  cons is t s  
predominantly of nitrogen. The e n t i r e  analysis  i s  not overly sens i t ive  t o  the 
evaluation of p,,. 
which are  approximations themselves. Values of Ell and E12 t h a t  have been 
used for Earth e n t r i e s  a re  1.0 and 0.0001, respect ively.  

The 

It appears as  a square r o o t  i n  equations (11) and (35) 

Other Calculated Quant i t ies  

Although not always required i n  the analysis  described i n  the preceding 
subsections, severa l  other  quant i t ies  a re  calculated because they a re  of 
i n t e r e s t .  These a re  described below. 

Therma1thicknesses.- W e  ca lcu la te  the thermal thickness,  A, based on the 
w a l l  temperature gradient .  

This i s  meaningful only when (aT/ay), < 0 (otherwise 
assigned the value lo6). 
we define as  the depth a t  which The corresponding v iscos i ty  thick-  
ness temperature i s  T+. The quantity,  T , i s  determined from Tw and the  
v i scos i ty  representat ion f o r m l a ,  equation?85), below. The quantity,  nrJ., i s  
determined by in te rpola t ion  of  temperature p r o f i l e  data .  

Tn ,  
e x i s t s  nowhere i n  the  temperature prof i le ,  4. 
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A i s  a r b i t r a r i l y  
We a l s o  ca lcu la te  a v i scos i ty  thickness, L$, which 

p = epw. 

If (aT/ay), >_ 0 or if 
i s  assigned the value zero. 



’ 
Stored energy .. comparison - with exponential  temperature p r o f i l e . -  Using a 

quantity,  $, w e  compare each calculated temperature p r o f i l e  with an exponen- 
t i a l  p r o f i l e  having the same (aT/ay),. The quant i ty  cp i s  defined as  the 
r a t i o  of energy s tored  t o  the  s tored energy associated with the  corresponding 
exponential  temperature p r o f i l e  (with form s imi la r  t o  equation ( A l )  i n  
appendix A ) .  
t i ons .  For the area under the  exponential  p r o f i l e  we have: 

Both energies a re  calculated as constant property approxima- 

Then, 

d T w  - To> 

Removal - -. of melted mater ia l  _ _  by pressure - _ -  gradient  -- and ~ surface shear.  - We 
ca lcu la te  a term t h a t  compares t h e  removal of melt by the pressure gradient 
and the  surface shear.  We define the  quantity,  AZD, as  an approximate evalua- 
t i o n  of twice the  r a t i o  o f  the  port ion of the melting veloci ty ,  Ex, due t o  t he  
pressure gradient  t o  t h a t  due t o  surface shear.  
twice the  r a t i o  of the f i rs t  term t o  the second term i n  equation (g), at  
y = 0. However, we use the  approximation, p 
obtain the  simple approximate expression, 

- 

The exact quant i ty  would be 

b e  ”’%’, i n  the  in t eg ra l s  and 

Surface recession-dce--tp_ vaporizaLion and melting. - W e  a re  in te res ted  i n  
comparing the  surFace recession due t o  vaporization with t h a t  due t o  melting. 
We define F as t h e  instantaneous r a t i o  of the surface recession r a t e  due t o  
vaporization t o  the  t o t a l  surface recession r a t e  (due t o  vaporization and 
melt ing) .  

For the  r a t i o  of  the  surface recession due t o  vaporization t o  the  t o t a l  sur-  
face  recession a t  any time, t: 

Flow l i n e s  i n  the  mater ia l . -  W e  are  i n t e re s t ed  i n  the  path of t he  flaw of 
m a t e r i a l u p  t o  the  point  of melting o r  vaporizing. 
i n t e r e s t  i n  the  study of t e k t i t e s .  To obta in  the  flow l ines ,  w e  make an 

This i s  of p a r t i c u l a r  
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approximate quasi-steady s ta te  ana lys i s .  

d x = & d t  

dy = V d t  

dy/dx = v/& 

where XBF i s  any se lec ted  small value of x a t  YBF (where = 0 ) .  Then 
x = XrXBF gives x(y)  a t  t i m e  t f o r  a f low l i n e .  

Aerodynamic decelerat ion.-  .~ For f l i g h t  cases, we are in t e re s t ed  i n  t h e  
aerodynamic dece lera t ion  of the  body. We ca l cu la t e  t he  r a t i o  of  the  aero- 
dynamic force  t o  the mass of the  body t o  obta in  t h e  aerodynamic decelerat ion.  
W e  define 
normalized by the  g r a v i t a t i o n a l  acce lera t ion  of t he  p lane t :  

aDg as the  component of dece lera t ion  due t o  aerodynamic drag, 

- DVm2 
aDg - 

2o (&) (3) 
The absolute value o f  t h e  t o t a l  normalized aerodynamic acce lera t ion  i s  

ag = aDg' 1 + (L/D,)Z 

Reradiation and apparent emiss iv i ty . -  The t e r m s  f o r  t he  f luxes  of 
rad ia t ion  a t  the f r o n t  and back surfaces  are given i n  equation (76).  
of re rad ia t ion ,  from the  f r o n t  surface (absolute  value) i s  
bodies, 

The r a t e  
FRS. For opaque 

FRS = EFFC~T,* (71.) 

The expression f o r  the  r e rad ia t ion  from the  back surface of opaque bodies has 
a s i m i l a r  form. 
will be assigned values.  For semitransparent ma te r i a l  representat ion,  t h e  
evaluat ion of EFF i s  as given i n  equation (45) .  

For opaque material, the  surface emissivities, cFF and 

For t ransparent  bodies, the s i t u a t i o n  i s  somewhat d i f f e r e n t .  Here, we 
wish t o  ca l cu la t e  e f f ec t ive  surface emissivities (which will vary with t ime) .  
The flux of r e rad ia t ion  from the  f r o n t  surface i s  given by 

Then we ca lcu la te :  
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Similar ly ,  f o r  the  back face:  

The quant i t ies ,  E~ and E i n  equations (73) 
e f f ec t ive  surface emissivit ies f o r  t ransparent  BF, and (74) are the  calculated 

material. 

Energy Balance 

Equation (1) i s  solved by numerical f i n i t e  d i f fe rence  methods, and it i s  
des i rab le  t o  check the  accuracy of so lu t ions  obtained. This i s  done by c a l -  
cu la t ing  a group of energy-integral  t e r m s  l i s t e d  below, summing them up, and 
determining the r e s idua l  ( e r r o r )  i n  the  sum. 
in t eg ra l s  i s  also of i n t e r e s t ,  because it shows the  d ispos i t ion  of t he  
energies involved; t h i s  knowledge gives an ins ight  i n to  the processes of 
ab la t ion .  

The magnitude of t he  energy 

W e  make the  l i s t i n g  of t he  energy rate terms as follows: 

The t o t a l  convective hea t - t ransfer  r a t e  i n to  the  material  i s  

qcon = SW + ~ B F  

The ne t  r ad ia t ive  heating ra te  in to  t h e  mater ia l  i s  

"FFoTW4 

(75) 

where 

B16 = 1 f o r  the  t ransparent  case 

B16 = 0 f o r  the  opaque and semitransparent cases 

and 

F = 0 f o r  the  opaque and semitransparent cases 

The energy accounted f o r  by the  rate of vaporization (pos i t i ve  in to  t h e  m a t e -  
r i a l )  i s  
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The energies put i n t o  the  mater ia l  are  accounted f o r  by t e r m s  t h a t  involve 
convection of the  ab la t ing  material i n  the  
storage term. 

x and y d i rec t ions  and by a 
For the  r a t e  of increase of s t o r e d  energy, 

cp dT, dY1 3 % t o r  - - p “I”:‘”” 
The x d i rec t ion  convection energy rate term (pos i t ive  out )  will be 

The y d i rec t ion  convection energy r a t e  term (pos i t ive  out)  i s  

%con = -pVw iTw cp dT1 

0 

The e r r o r  i n  the  energy r a t e  balance w i l l  be a r e s idua l  t e r m ,  qres. 

The residual ,  qres, shows the  accuracy of the  energy r a t e  balance a t  any time, 
t .  

The cumulative energy balance shows the t o t a l  s i ze  of the  various terms 
involved and the  e r r o r  accumulation. We compute the  following in tegra ls :  

r 
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So, f o r  t he  accumulated r e s idua l  we have: 

&res  = %on + Brad + Qvap - % t o r  - %con - %con (83) 

METHOD OF THE NUbERICAL PROGRAM 

Representat ions of Physical  Propert ies  

. Most of the  equations i n  the  previous sect ion contain ( a t  l e a s t  
impl ic i t ly )  quan t i t i e s  representing physical  propert ies  of the  ab la t ing  mate- 
r i a l  or externa l  gas. The densi ty  of the  ablat ing material ,  p,  i s  assumed t o  
be constant, but  the  o ther  per t inent  physical  propert ies  are  considered t o  be 
temperature dependent. The temperature dependence of the physical p roper t ies  
has been l e f t  unspecified; however, t o  obtain numerical solut ions,  it w i l l  be 
specif ied by formulas with constants t h a t  can be a r b i t r a r i l y  chosen and read 
in to  the computing program. The representat ions used a re :  

Equilibrium vapor pressure of ablat ing mater ia l ,  atm 

Viscosity of ab la t ing  material ,  poises 

Specif ic  heat of ab la t ing  mater ia l ,  cal /g  OK 

Thermal conductivity of  ab la t ing  mater ia l ,  cal/cm sec OK 

E2 K = B, + - + E ~ ~ T ~  T 

Average spec i f i c  heat  of ex te rna l  gas, cal /g  OK (see eq. (14) )  
- cp = E l 0  + E3TV 

(87)  



Transformation of Coordinates and F i n i t e  Differencing 

A s  described i n  the  ANALYSIS AND METHOD OF SOLUTION sect ion,  the  
procedure i n  solving the  system of equations presented i s  t o  make, i n  e f f e c t ,  
a l l  equations a u x i l i a r y  t o  equation (1) which i s  solved with i t s  appropriate 
boundary conditions as given i n  equations ( 4 6 )  and (47) o r  (51). 
a p a r t i a l  d i f f e r e n t i a l  equation, i s  solved by a f i n i t e  difference scheme; some 
complications are produced by  the  decrease of length wi th  t i m e  between the  
f r o n t  and back surfaces  due t o  f r o n t  surface recession.  I n  t h i s  work, it w a s  
e lec ted  t o  keep the  number of g r i d  poin ts  constant,  so t h e  dis tance between 
g r i d  points  w a s  allowed t o  shr ink with decreasing length  of the  ab la to r .  This 
w a s  accomplished by the  following transformation of independent var iables  from 
t, y t o  s, 7, where 

Equation (l), 

s = t  (89) 

Y= 
= L - X ( t )  

Then, 

This transformation alters somewhat t he  form of equation (1) and the  o ther  
equations as a c t u a l l y  put i n t o  the  numerical computing program. 

Equation (1) i s  solved numerically by an e x p l i c i t  (forward difference)  
scheme. I n  f i n i t e  difference form, t h e  p a r t i a l  der iva t ives  of the  tempera- 
t u re ,  T, are represented as: 
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I 

I- -m-Io 
T 

5 .:( : 0 .4 
0 0 0 

where m - 1, m, m + 1 are g r id  poin t  
numbers on t h e  7 (depth) scale and n, 
n + 1 are nwribers on t h e  s (time) 
sca l e  as shown i n  sketch (b ) .  F i n i t e  
increments of s and 7 are indicated 
by t h e  A symbol. 

b d  4 4 I 

Sketch (b)  

m-1 m m+ I 
7 

S t a b i l i t y  and Accuracy of the F i n i t e  Difference Equation 

I n  solving a parabol ic  par t ia l  d i f f e r e n t i a l  equation by a forward 
difference scheme, there i s  always a s t a b i l i t y  requirement t o  be m e t .  For the 
f i n i t e  differencing of t h e  transformed version of equation (l), the  s t ab i l i t y  
requirement tu rns  out  t o  be: 

The s t a b i l i t y  parameter, Z, i s  p r in t ed  out by the computing program f o r  each 
g r i d  poin t  a t  each time pr in ted .  The increments of A7 remain constant with 
t i m e ,  bu t  t he  increments of Ay decrease w i t h  t i m e ,  as indicated by equa- 
t i o n  (go) ,  u n t i l  ab l a t ion  i s  concluded. 
while ab la t ion  i s  proceeding, and t h i s  must be considered i n  se l ec t ing  i n i t i a l  
increments. Since Z should not exceed 1/2, it  i s  not possible  t o  use the  
computing program t o  ca lcu la te  t o  the  point  of complete ex t inc t ion  of an 
ab la t ing  material. When t h e  present  numerical program i s  used f o r  t ransparent  
material, t he  s torage l imi t a t ion  requires  t h a t  the i n i t i a l  value of the r a t i o  
of length  (depth) t o  the smallest  
appendix D). 

Thus, Z tends t o  increase somewhat 

A7 be <_ 1665 (see spacing sketch i n  

A gross check on the  accuracy of numerical solut ions obtained i s  provided 
by the  running energy balance and the  cumulative energy balance (see ANALYSIS 
AND METHOD OF SOLUTION sec t ion ) .  An addi t iona l  check, standard i n  numerical 
work, can be made by varying Os and Aq and noting the r e s u l t a n t  var ia t ions  
produced i n  the numerical solut ions.  This check, i n  e f fec t ,  determines the  
adequacy of represent ing the  der iva t ives  by difference quot ients  with the  
f i n i t e  increments as chosen (eeqs. (93) ,  (94), and (95)) .  

Boundary Conditions f o r  Transparent Material 

It was noted i n  the ANALYSIS AND METHOD OF SOLUTION sec t ion  t h a t  the  
computing program can be arranged t o  modify the  surface energy balance equa- 
t i ons  (4.6) and (47) f o r  t he  t ransparent  case. Equations (46) and (47) are 
rigorous as wri t ten,  b u t  they require a f i n e  spacing of g r i d  points ,  and 
therefore  s m a l l  t i m e  increments f o r  s t a b i l i t y .  P a r t i c u l a r l y  near the  f r o n t  
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face,  the  der ivat ive of the  rad ia t ion  f lux,  g, can change by orders of 
magnitude i n  a shor t  dis tance.  With a "normal" spacing of g r id  points,  the 
f i n e  s t ruc ture  of the  var ia t ion  of F and g a re  not wel l  represented, and 
t h i s  can r e s u l t  i n  energy balances t h a t  are not accurate ( la rge  r e s idua l s ) .  
I n  the computing program, the  f r o n t  surface energy balance t h a t  we ac tua l ly  
use f o r  the t ransparent  case ( ~ 1 6  = 1) is:  

where F112 
f i rs t  i n t e r i o r  f in i te -d i f fe renced  g r id  point  (point  number 1 + K2 i n  FORTFUN 
terminology; see spacing sketch i n  appendix D ) .  For the back surface energy 
balance , 

i s  the  rad ia t ion  f l u x  midway between the  f r o n t  surface and the  

where F B F - ~ , ~  
point  and the  nearest  i n t e r i o r  g r id  point .  The quant i t ies ,  Es6 and E37, a re  
constants read i n t o  the program and w i l l  have values > 0 and < 1. When 

and Es7 can 
be adjusted t o  give optimum energy balances; very good energy balances have 
been obtained with E36 = Es7 = 1. 

i s  the  rad ia t ion  f lux  midway between the  back surface g r id  

- 
= Es7 = 0, we recover equations ( 4 6 )  and (47) exact ly .  

ILLUSTRATIVE EXAMPLES 

Examples shown below i l l u s t r a t e  the  use of the numerical computing 
program as applied t o  severa l  types of  ablat ion.  Calculated and measured 
r e s u l t s  a r e  compared f o r  a l l  examples except the las t  one, which i s  a Mart ian 
entry.  The disposi t ion of  energies f o r  t y p i c a l  examples given i s  summarized 
i n  t ab le  I. 

Tekt i te  Glass i n  a Wind Tunnel 

Tekt i te  glasses ,  ablated a t  high enthalpies  i n  an a r c - j e t  wind tunnel, 
furn ish  examples of ab la tors  t h a t  both vaporize and m e l t .  Typical comparisons 
between calculated and measured values of surface recession and surface 
brightness temperature a re  shown i n  f igu res  1 and 2. The measured points  i n  
f igu re  2 are  ac tua l ly  a spread; measurements on other  t e k t i t e  glasses  f e l l  
between these poin ts .  The agreement can be seen t o  be very good, which lends 
confidence t h a t  data  f o r  f l i g h t s  involving t e k t i t e  g lass  can be successful ly  
calculated ( r e f .  1). I n  both f igures  the  calculat ions were made f o r  a t r ans -  
parent g lass  and f o r  a semitransparent g lass ,  and there  i s  l i t t l e  difference 
between the r e s u l t s  of  the two methods of computation. The glasses  used i n  
these examples ab la te  by melting more than by vaporizing because of  the 
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surface recession of t e k t i t e  g l a s s  i n  a wind 
tunnel. 

Figure 1.- Comparison of ca lcu la ted  and measured 
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Figure 2.-  Comparison of calculated and measured 
br ightness  temperature of t e k t i t e  g lass  i n  a 
wind tunnel .  

moderate enthalpy i n  the wind tunnel,  t he  low v i s c o s i t i e s ,  and l o w  vapor 
pressures of t he  g lasses .  For the  g lasses  i n  figure 1, about l p e r c e n t  of the 
ab la t ion  is  due t o  vaporization, and f o r  t he  g l a s ses  i n  f i g u r e  2, vaporizat ion 
accounts f o r  less  than 1 percent.  A t  higher en tha lp ies  t he  relative amount of 
vaporization increases .  Table I gives the d i spos i t i on  of energies ca lcu la ted  
f o r  the  semitransparent g l a s s  of f i gu re  1. Because of t he  small amount of 
vaporization, very l i t t l e  heat i s  blocked, and most of the  incoming energy i s  
accounted f o r  by melting. 

Tek t i t e  Entry Calculat ion 

The r e s u l t s  of ca l cu la t ing  an en t ry  f o r  a t y p i c a l  opaque t e k t i t e  are 
shown i n  f igu res  3 and 4. 
-30' w e r e  used f o r  the  ca l cu la t ions .  
deduced t r a j e c t o r y  f o r  a Vic to r i a  a u s t r a l i t e  ( r e f .  2, f i g .  22) . 
shows the  ca lcu la ted  values of veloci ty ,  surface temperature, surf ace reces- 
sion, and surface recession due t o  vaporizat ion.  The free-molecule and con- 
tinuum regimes are a l so  dis t inguished.  Time zero i s  a r b i t r a r i l y  se lec ted  as 
"far out"  before  any appreciable aerodynamic heat ing has begun. This example 
i l l u s t r a t e s  the response o f  a mater ia l  t h a t  vaporizes readi ly ,  with about 
14 percent of the ab la t ion  due t o  vaporizat ion and the res t  t o  melting. A s  

A n  en t ry  speed of 11.0 km/sec and an e n t r y  angle of 
These condi t ions correspond t o  a t y p i c a l  

Figure 3 
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Figure 3. - Calculated var ia t ion  of surface tem- 
perature ,  veloci ty ,  t o t  a1 ab l a t i o n ,  and 
vaporized ab la t ion  f o r  a Vic tor ia  a u s t r a l i t e  
enter ing the  Earth 's  atmosphere; R i  = 0.816 cm. 
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Figure 4. - Calculated temperature p r o f i l e s  f o r  a 
Vic tor ia  a u s t r a l i t e  en ter ing  Earth' s atmo- 
sphere; Ri = 0.816 em. 
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the  t e k t i t e  heats up, i t s  surface begins t o  ab la te  at a temperature i n  excess 
of 2000 OK. The surface temperature and ab la t ion  rate reach a m a x i m  and 
then f a l l  off  as the  body slows down. 
abruptly, and the remainder of the  f l i g h t  i s  t h a t  of a so l id  body being aero- 
dynamically cooled. Measurements of t he  m u n t  of ab la t ion  at the  stagnation 
point  ( r e f s .  1 and 2) on recovered t e k t i t e s  y i e ld  values not g rea t ly  d i f f e ren t  
f rom the  7.3 mm calculated for t h i s  example. The calculat ions indicate  t h a t  
f o r  t h i s  f l i g h t ,  a negl ig ib le  port ion of t he  ab la t ion  occurred i n  the  f r e e -  
molecule regime. The port ion of t he  ab la t ion  i n  the  t r a n s i t i o n a l  regime w a s  
24 percent, compared t o  the  majority of ab la t ion  i n  the  continuum regime 
(76 percent) .  For smaller t e k t i t e s  and shallow en t ry  angles the percent of  
ab la t ion  i n  the free-molecule and t r a n s i t i o n a l  regimes w i l l  be grea te r ;  f o r  
large vehicles t h i s  por t ion  of  ab la t ion  i s  general ly  small. 

The end of ab la t ion  occurs ra ther  

I n  f igu re  4 are shown var ia t ions  of the  ca lcu la ted  temperature p ro f i l e s  
and surface recession a t  selected values of time. This f igu re  gives a f a i r l y  
complete p i c tu re  of t h e  i n t e r n a l  heating and eventual cooling of the body 
during i t s  f l i g h t .  The r ise i n  the  back temperatures i s  due t o  base heating. 
Measurements on recovered bodies by pho toe la s t i c i ty  techniques show locked -in 
thermal s t r e s ses  t h a t  vary from a depth of 0.2 t o  0.35 em, corresponding t o  
the  calculated depth of 0.23 em ( r e f .  2 ) .  
thermal s t r e s ses  and deduced surface recession on recovered bodies are com- 
pa t ib l e  with the calculated r e s u l t s .  The energy d ispos i t ion  f o r  the f l i g h t  
calculated i s  given i n  t ab le  I. The vaporization t h a t  occurs i n  t h i s  f l i g h t  
causes subs t an t i a l  heat blockage; the bulk of t he  energy i s  accounted f o r  by 
heat blockage, heating and vaporizing, and heating and melt f l o w ,  these three  
quant i t ies  being of about the  same order of  magnitude. 

The pos t - f l i gh t  observations of 

Reentry F l igh t  With S i l i c a  Glass Heat Shield 

A ca lcu la t ion  was made f o r  a reent ry  f l i g h t  of  a nose-cone with an opaque 
s i l i c a  g lass  heat sh ie ld .  The vehicle and f l i g h t  a r e  described by Hidalgo and 

Before t o ry  and t h i s  heat -shield mater ia l  about 
entry - - .  Recovered 1 4  percent o f  the  ab la t ion  was due t o  vapori- 

zat ion which i s  comparable t o  the t e k t i t e  
en t ry  case previously discussed. The 
recovered reent ry  vehicle allowed the amount 
of ablat ion,  X, at the  stagnation point  t o  be 

f determined. The physical-property inputs i n  

-...... * Kadanoff i n  reference 20. For t h i s  t r a j e c -  

m, x (observed) 

%. t h i s  case correspond t o  opaque s i l i c a  
( r e f .  20), but  both t h e  transparent and the  
semitransparent options of the  computing 
program were run with the  r e s u l t s  

- - -. .-.. 
Sketch ( e )  

X( semitransparent) 
X( observed) ~ = 1.15 
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The corresponding r a t i o  as ca lcu la ted  by  Hidalgo and Kadanoff using t h e i r  
quasi-steady ab la t ion  ana lys i s  w a s  about 1.10 and by  Chapman and Larson 
( re f .  l), using an i n t e g r a l  method of ca lcu la t ion ,  0.92. 
t h a t  the  amount of ab la t ion  on simple mater ia l s  such as g lass  can be computed 
t o  t h e  order  of 10- t o  15-percent accuracy by several methods, including two 
of t he  options of t he  present  computing program. I n  view of the  inevi tab le  
angle-of -a t tack  va r i a t ions  i n  f l i g h t ,  which cause the  s tagnat ion poin t  of 
maximum heat ing t o  wander somewhat over the nose and thus reduce somewhat t he  
m a x i m u m  recession, t h e  observed difference between ca lcu la ted  and measured 
ab la t ion  i s  i n  t h e  expected d i rec t ion .  The energy d ispos i t ion  f o r  both t h e  
t ransparent  and semitransparent ca lcu la t ions  i s  shown i n  t a b l e  I. It i s  of 
i n t e r e s t  t h a t  t he  two ca lcu la t ions  y i e l d  energy proportions t h a t  are near ly  
the same, although the  i n t e r n a l  temperature d i s t r ibu t ions  are d i f f e ren t  
because of r ad ia t ive  transmission i n  the t ransparent  case. I n  both cases the  
t o t a l  ab la t ion  i s  moderate, so t h a t  t he  a c t u a l  amount of vaporizat ion is  
moderate and the  heat  blockage t e r m  i s  re la t ively s m a l l .  

This i l l u s t r a t e s  

Teflon Model i n  an Arc-Jet Wind Tunnel 

Under normal ab la t ive  conditions,  te t raf  luoroethylene polymer (Teflon) 
undergoes a surface depolymerization and vaporizat ion of t h e  monomer a t  a sur- 
face  temperature of approximately 760 OK. 
t u r e  a t  which the  reac t ion  occurs,  bu t  a sharply r i s i n g  reac t ion  rate with 
temperature i n  t h i s  neighborhood e s s e n t i a l l y  cont ro ls  t he  surface temperature 
of an ab la t ing  model ( refs .  21, 22).  
Teflon remains high, so t h e  process can be  s a i d  t o  resemble a sublimation 
(with the  r eac t ion  rate determined by an Arrhenius type rate equat ion) .  I n  
performing the  ca lcu la t ions  f o r  Teflon ablat ion,  it w a s  assumed t h a t  any 
energy involved i n  possible  chemical reac t ions  between the  Teflon vapor and 
the ex te rna l  gases could be neglected.  

There i s  no one spec i f i c  tempera- 

Under these  conditions,  t he  v i scos i ty  of 

Comparisons between ca lcu la ted  and experimentally measured surf ace 
recession f o r  Teflon are shown i n  f igu re  5. The experiments by G. Lee and 
R .  Sundell ( r e f .  23) were performed i n  an a r c - j e t  wind tunnel  f o r  four  values 
of enthalpy. It i s  seen t h a t  the  agreement obtained i s  qu i t e  good,with t h e  
possible  exception of t he  TOO Btu/lb t o t a l  enthalpy case.  It i s  thought t h a t  

I 
Btu/lb 

0 700 
n I O 0 0  555 
0 2000 1110 

CALCULATED 

0 10 20 30 40 50 60 
t ,  sec 

Figure 5 . -  Comparison of calculated and measured 
surface recession of Teflon i n  wind tunnel. 

the  general ly  s a t i s f a c t o r y  agreement 
shown i n  the  f igu re  ind ica tes  t h e  
v a l i d i t y  of the  method ca lcu la t ion  and 
a l so  t h a t  t h e  physical  p roper t ies  of 
t h e  substance have been adequately 
represented. The f r o n t  f ace  mass loss 
rate w a s  e s s e n t i a l l y  r eac t ion  rate con- 
t r o l l e d  f o r  t he  fou r  cases shown i n  the  
figure . 

The d ispos i t ion  of t he  ca lcu la ted  
energies  f o r  t he  2000 Btu/lb t o t a l  
enthalpy case i s  shown i n  t a b l e  I. 
The heat  blockage t e r m  i s  f a i r ly  l a rge  
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because a l l  t he  ablated material leaves i n  the  vapor s t a t e .  The l a rges t  term 
i s  the  energy f o r  heating, depolymerizing, and vaporizing. 

Teflon Heat Shield i n  a Mars Entry 

The ca lcu la t ions  f o r  t h i s  example i l l u s t r a t e  the  appl icat ion of the  
computing program t o  an en t ry  with a proposed Mars probe ( r e f .  24).  
c a l  capsule of 61.0-cm diameter has been assumed, with a 1-em th i ck  Teflon 
heat shield,  enter ing the  Martian atmosphere i n  an or iented a t t i t u d e .  Four 
hypothet ical  atmospheres were assumed as tabulated below. 

A spheri-  

Composition (vo1.) Scale height,  km 

100% N 2  7.8 
91% N2, 9% CO2 7.8 

100% N 2  20.0 
91% N2, 9% GO2 20.0 

Subsequent t o  making these calculat ions,  data  obtained f rom the  1965 Mariner 
occul ta t ion experiment have indicated t h a t  the  sca le  height of the Martian 
atmosphere i s  about 9 km ( ref .  25).  The assumed atmospheres with the  7.8 km 
scale  heights thus appear t o  be the more r e a l i s t i c  ones. Calculations were 
made f o r  an en t ry  ve loc i ty  of 7.92 km/sec and f o r  two en t ry  angles, -90' and 
-20'. An M/CDA f o r  continuum flow of 3.91 g/cm2 was assumed f o r  the vehicle, 
and M/A w a s  held constant while the CD varied through the  t r a n s i t i o n  from 
the  free-molecule t o  t he  continuum regimes. 

The -90° e n t r i e s  have the  greater  peak heating r a t e s ,  bu t  the  -20' 
e n t r i e s  absorb more t o t a l  heat and are  the more c r i t i c a l  f rom a heat-shield 
standpoint.  The heat-shield responses are compared using calculated values 
of the stagnation-point recession as tabulated below. 

Entry angle, Tota l  stagnation 
Atmo sphere deg point  recession, ~~~ c m  ~~ 

N 2  small-scale height -90 
N 2  large-scale  height - 90 

N2 -C O2 small - s c a l e  he igh t  -90 
N2-C02 large-scale  height -90 
N2-C02 small-scale height -20 
N2-C02 large -scale height -20 

0.098 
* 1.59 
.121 
1-79 

.196 

.3 41 

O f  the  -90' e n t r i e s  i n  the tab le ,  the  most severe environment would be the 
mixed atmosphere and the  large-scale height (although the small-scale height 
appears t o  be more r e a l i s t i c ) .  
gives somewhat more ab la t ion  than the nitrogen atmosphere because there  i s  
more rad ia t ion  f rom the  carbon dioxide ( r e f .  17). The time of exposure t o  
heating i s  roughly proport ional  t o  sca le  height f o r  two otherwise similar t r a -  
j ec to r i e s ,  and the  t o t a l  heat absorbed i s  approximately proportional t o  the  
square r o o t  of exposure time (and therefore  sca le  he ight ) .  
re la t ionship  between sca le  height and t o t a l  recession f o r  a given atmospheric 

For a given sca le  height,  the mixed atmosphere 

This approximate 



composition can be deduced from the  tab le .  The strong dependence of the  
heat-shield response on any uncertainty of knowledge of atmospheric scale  
height i s  of i n t e re s t ,  s ince t h i s  t rend w i l l  presumably apply t o  any heat-  
sh ie ld  material and any p lane t .  

H e a t  blocked 

(Net convection i n )  

Net r a d i a t i o n  i n  

Heating and 
vaporizing 

Heating and melting 

The d ispos i t ion  of energy f o r  t he  -20° en t ry  with the mixed atmosphere 
and short-scale  height i s  shown i n  t ab le  I. A s  with the  wind-tunnel r e s u l t s  
f o r  Teflon, the  two la rge  energy t e r m s  are the  heat blockage term and the  
t e r m  that accounts f o r  heating, depolymerizing, and vaporizing. I n  the  envi- 
ronment of the  -20° Martian entry,  t he  considerable amount of ab la t ion  of 
mater ia l  t o  the  vapor s t a t e  accounts f o r  the very large heat blockage term. 

2.9 

(97.1) 

-13.3 

5.2 

69.1 

MARS ENTRY ASSUMED ATMOSPHERE 

ENTRY VELOCITY = 7.92 km/sec 
ENTRYANGLE=-20' SCALE HElGHTi20.0 km 

TOTAL MATERIAL LOSS = 1.56 kg.3.43 Ib 

91Y- Np, 9% Cop (VOL) 

- 900 .6 r 

4 

5 
i 

.2 

0 

- 'T,,, (FRONT FACE) 

30 60 90 

T,,, (FRONT FACE) mfi 1;:: 
300 

30 60 90 
ANGLE FROM STAGNATION POINT, 9. deg 

Figure 6.- Approximate ca lcu la t ion  of response 
of a Teflon heat sh ie ld  i n  a Mars entry.  

A s  an i l l u s t r a t i o n ,  the  analysis  
has a l so  been used i n  an approximate 
manner t o  ca lcu la te  the  quan t i t i e s  of  
i n t e r e s t  around the  f ron t  hemisphere of 
the  spher ica l  capsule f o r  the -20° 
en t ry  i n  the  mixed atmosphere with the  
(probably overly severe) large sca le  
height.  The r e s u l t s  are  summarized i n  
f igu re  6 which shows the var ia t ion  of 
t o t a l  recession and f r o n t  and back face 
m a x i m  temperatures around the hemi- 
spheric heat sh ie ld  as  w e l l  as the  
t o t a l  m a s s  loss f o r  t h i s  hypothet ical  
case. These r e s u l t s  i l l u s t r a t e  how 
variable  mater ia l  thickness may be used 
i n  heat-shield design. 

TABLE I . -  TYPICAL EXERGY BALANCES (percentages)  

Convection i n  
(hot  wal l )  

Tek t i t e  g l a s s  
(semi t r anspa ren t )  

wind tunne l  
( f i g .  1) 

- 

100.0 

Stored 

Er ro r  
~~ 

4.6 

4.9 
- 

S i l i c a  g l a s s  
hea t - sh i e ld  
Ea r th  e n t r y  

( t r anspa ren t )  

100.0 

11.4 

(88.6) 

-28.4 

21.5 

28.6 

10.4 - 
-0.3 

- 
S i l i c a  g l a s s  
heat  - sh i e ld  
Ea r th  e n t r y  

:semitransparent) 

100.0 

11.5 

(88.5) 

-27.6 

21.2 

31.6 

6.9 - 
1.2 

Teflon wind 

hs=2000 Btu/lb y i= -200 

100.0 100.0 

71.9 

(64.6) (28.1) 

-4 



CONCLUDING REMARKS 

A generalized ana lys i s  of stagnation-point ab la t ion  has been presented 
f o r  solving a va r i e ty  of problems involving melting and vaporizing, subliming, 
o r  surface chemical react ions.  The f l e x i b i l i t y  of the  ana lys i s  has been 
demonstrated through the  presentat ion of severa l  var ied i l l u s t r a t i v e  examples. 
I n  general, it i s  expected t h a t  accuracy of answers obtained will depend 
la rge ly  on the  degree of knowledge o f  the  physical, chemical, and thermody- 
namic proper t ies  of the  ab la t ing  mater ia l ,  as  these are necessary inputs f o r  
t he  computing program. The procedure of r e l a t i n g  calculat ions f o r  a given 
mater ia l  t o  experiment wherever possible lends confidence t o  calculat ions f o r  
the same mater ia l  exposed t o  other conditions which cannot be ve r i f i ed  by 
observation. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f  ., Ju ly  22, 1966 
129-03-12-01-00 



APPENDIX A 

PRINCIPAL NOMEXTCLATURE 

I n  performing computing machine calculat ions,  some purely FORTRAN 
quan t i t i e s  are used, p a r t i c u l a r l y  among input data,  which have no counterpart  
among the  symbols l i s t e d  below. 
a l l  FORTRAN quan t i t i e s  are l i s t e d .  

These quan t i t i e s  are i n  appendix D, wherein 

a y d i r ec t ion  body force  per u n i t  m a s s ,  cm/sec2 (acce lera t ion  i n  
f l i g h t )  

component of dece lera t ion  due t o  aerodynamic drag normalized by 
g r a v i t a t i o n a l  acce lera t ion  of p lane t  dimensionless (eq. (69) ) aDg 

absolute value of aerodynamic acce lera t ion  normalized by gravi ta -  
' t iona l  acce lera t ion  of p lane t ,  dimensionless (eq.  (70)) Q a 

A f r o n t a l  area,  em2 

f r e e  -molecule accommodation coe f f i c i en t s  f o r  heat  t r ans fe r ,  mass 
momentum ( f o r  surface shear),  respect ively,  dimension- loss, x 

l e s s  

A, q ? Ac V? 
Acm 

Ac v' corrected mass-loss accommodation coe f f i c i en t  (eq. (39c))  , 
dimensionless 

A 1  constant,  defined by equation (27) 

A 2  constant,  defined by equation (11) 

A 3  constant,  defined by equation (32a) 

A 4  constant,  defined by equation (15) 

melt-off parameter, defined by equation (65) dimensionless A2D 

b Sutherland constant ,  OK (eq .  (C38)) 

B Arrhenius frequency f a c t o r y  cm/sec (eq.  (39e) ) 

B2 constant i n  vapor pressure (eq. (84 ) )  

B3  constant i n  vapor pressure (eq. (84 ) )  

B4  constant i n  v i scos i ty  (eq. (85)) 

B5 constant i n  v i s c o s i t y  (eq.  (85 ) )  
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B6 

B7 

BS 

B11 

B14 

16 

C 

- 
C 

c2 

c3 

c4 

c6 

D 

ea2 

constant i n  spec i f ic  heat (eq. (86)) 

constant i n  spec i f i c  heat (eq.  (86)) 

constant i n  thermal conductivity (eq. (87)) 

constant i n  convective heat blockage f a c t o r  (eqs.  (28) , (30) ) 
(See discussion following eq.  (C7).) 

constant i n  v iscos i ty  (eq. (85)) 

constant;  B16 = 1.0 f o r  t ransparent  case;  B16 = 0 f o r  opaque and 
semitransparent cases (eqs. (46) , (47) , (51) ) 

spec i f i c  heat of body material, cal/g OK 

heat capaci ty  per  u n i t  area of backing mater ia l ,  cal/cm2 OK 
(es. (51.1) 

spec i f ic  heat of a gas a t  constant pressure,  cal/g OK 

average spec i f ic  heat, ex te rna l  gas, cal/g ?K; defined by equation(14) 

drag coef f ic ien t ,  continuum drag coe f f i c i en t ,  free-molecule drag 
coef f ic ien t ,  respectively,  dimensionless 

constant i n  nose radius (eq. (60)) 

constant i n  nose radius  (eq. (60) )  

constant i n  M/A (eq. (56) )  

constant i n  M/A (eq. (56))  

constant, v o r t i c i t y  correct ion i n  equation (15) 

free-stream density,  g/m3 

allowable e r r o r  i n  Tw (se lec ted)  , OK; allowable disagreement 
between T, obtained from equations (1) and ( 4 6 )  

error i n  

Arrhenius ac t iva t ion  temperature, OK (eq. (39e) ) 

Tw a f t e r  last i t e r a t i o n ,  OK; w i l l  be < ea2  

exponential i n t e g r a l  (second degree) , defined i n  equation (43) 

constant i n  spec i f i c  heat (eq.  (86)) 

constant i n  thermal conduci t ivi ty  (eq.  (87)) 
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E3 

E4 

E5 

E6 

E7 

E8 

E9 

E 10 

E l l  

E 12 

E13 

E14 

E 15 

E 16 

E 17 

E18  

E l 9  

E20 

E33 

E35 

E36,E37 

E38 

constant i n  average spec i f i c  hea t  (eq. (88)) 

constant i n  gas-cap r ad ia t ion  (eq. (44)) 

constant i n  gas-cap r ad ia t ion  (eq. (44)) 

constant i n  gas-cap r ad ia t ion  (eq. (44)) 

constant t o  account f o r  shif t  of vaporization equilibrium 
(es. (26)) 

constant i n  expression f o r  shear blowing f a c t o r  (eq. (34)) 

constant,  defined by equation (58) 

constant i n  average spec i f i c  heat  (eq. (88)) 

constant i n  expression for 

constant i n  expression f o r  

constant,  defined by equation ( 5 0 )  

p,, (eq. (61)) 

pZ1 (eq. (61)) 

constant depending on body shape and f l i g h t  conditions i n  drag 
br idging (eq. ( 5 7 ) ) ;  see a l s o  equation (C46) 

constant accounting f o r  body force  i n  wind tunnel  expression f o r  
P "  (eq. ( l oa ) )  

constant used i n  tumbling cor rec t ion  (eq. (12) )  

constant i n  nose radius (eq. (60)) 

constant i n  M/A (eq. (56 ) )  

constant,  defined by equation (49) as the  r a t i o  of turbulent  t o  
laminar base heat ing 

constant i n  thermal conduct ivi ty  (eq. (87)) 

constant used i n  expression f o r  f r o n t  face  emiss iv i ty  f o r  s e m i -  
t ransparent  body (eq. (45) ) 

constant, asymptotic value of $ (eq. (28)) 
(See discussion following eq. (C7) . )  

constants  used i n  equations (97) and (98) t o  modify surface energy 
balances f o r  t h e  transparent, case 

average ambient enthalpy f o r  f l i g h t  case, km2/secz (eq. (55 ) )  
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r a t i o  of a c t u a l  v i scos i ty  t o  undissociated (Sutherland) value , 
dimensionless 

r ad ia t ion  f lux ,  cal/cm2 see (eq. (41 ) )  

r e rad ia t ion  rate from f r o n t  surface,  cal/cm2 see (eqs . (p), (72) ) 

r ad ia t ion  f l u x  midway between f r o n t  surface and f i r s t  i n t e r i o r  
f i n i t e -d i f f e renced  g r i g  point ,  po in t  number 1 + k2 i n  FORTRAN 
terminology; see Spacing Sketch i n  appendix D; cal/cm2 see 
(es. (97)) 

r ad ia t ion  f l u x  midway between back .surface g r i d  point and nearest  
i n t e r i o r  g r i d  poin t ,  cal/cm2 see (eq. (98)) 

r a t i o  of surface recession rate due t o  vaporization to  t o t a l  sur- 
f ace  recession rate, dimensionless (eq. (66)) 

r a t i o  of surface recession due t o  vaporization t o  t o t a l  surface 
recession, dimensionless (eq.  (67))  

gradient  of r ad ia t ive  f l u x ,  dF/dy, cal/cm3 see 

g r a v i t a t i o n a l  acce lera t ion  of p lane t  , cm/sec2 (eq.  (53b) ) 

enthalpy , cal /g  

s tagnat ion enthalpy, cal/g 

l a t e n t  heat  of vaporization, cal /g  

average ambient enthalpy f o r  f l i g h t  case, cal /g  (eq.  ( 5 5 ) )  

h/hs, dimensionless 

(1 - E ) / ( l  - Ew) , dimensionless 

thermal conductivity,  cal/cm see OK 

mean free pa th  constant,  moles (eq. (C40)) 

Reynolds analogy f a c t o r  (eq.  (31) ), dimensionless 

f r a c t i o n a l  t i m e  center  po in t  i s  exposed t o  s tagnat ion conditions, 
dimensionless (eq.  (12) ) 

correc t ion  f a c t o r  f o r  heat  t r a n s f e r  and o ther  quan t i t i e s  due t o  
o s c i l l a t i o n  i n  f l i g h t  , dimensionless (eq.  (12) ) 

i n i t i a l  depth of material, e m  

L e w i s  nwzlber, dimensionless 



L/Dr 

m 

m 

M 

- 

M i  

B 
n 

P 

Pt2 

Pv 

Pve 

p, 

P 

~ F M  

%O 

s, 
%C 
vort=o 

l i f t  /drag rat io,  dimens ionle  s s 

molecular weight 

mass loss r a t e ,  g/cm2 sec 

m a s s  of body, g; a l s o  g r id  point  number i n  f i n i t e  difference 
computation 

free-stream Mach number, dimensionless 

Q/mv, dimensionless (eq. (29)) 

index o f  re f rac t ion ,  dimensionless; a l so  exponent i n  equation ( 3 0 )  

pressure,  dynes/cm2 or a t m ,  as  specif ied 

pressure downstream of normal shock, a t m  

ac tua l  vapor pressure,  atm 

equilibrium vapor pressure,  a t m  

modified equilibrium vapor pressure,  a t m  (eq. (26) ) 

r a t i o  of pressure of ex terna l  gas to  modified equilibrium vapor 
pressure of ablated vapor, dimensionless (eq.  (26) ) 

negative of second der ivat ive with respect t o  x of  ex terna l  
pressure with a correct ion f o r  body force,  dynes/cm4; defined i n  
equation (8) ; evaluated i n  equation (10) 

hea t - t ransfer  r a t e ,  cal/cm2 sec; a l s o  dynamic pressure,  dynes/cm2 

surf ace convective (continuum) hea t - t ransfer  rate with no blowing, 
cal/cm2 sec (eq.  (15 ) )  

( e s .  (1-7)) 
surf ace convective ( f r e e  molecule) heat - t ransfer  r a t e ,  cal/cm2 sec 

surf ace convective heat - t ransfer  r a t e  with no blowing, bridged 
between qoc and qFM, cal/cm2 sec (eq.  (20)) 

q,, corrected f o r  tumbling or osc i l l a t ion ,  cal/cm2 sec (eq. (21) )  

without v o r t i c i t y ,  cal/cm2 sec; C 6  = 0 i n  equation (15) 

gas-cap rad ia t ion  r a t e ,  cal/cm2 sec (eq.  (44) )  
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surface convective (continuum) hea t - t ransfer  rate with blowing, 
cal/cm2 sec (eq. (16))  

surface convective heat - t ransfer  rate ( a l l  regimes), bridged 
between q and qm, cal/cm2 sec (eq .  (18) or (22b)) q w  

$c 

qqW corrected for turribling or o s c i l l a t i o n ,  cal/cm2 sec 
(eq. (1.9) or  (23)) 

9, 

i n i t i a l  conibined convective and r ad ia t ive  heating rate, qwRi 
cal/cm2 sec (eq. (B3a) )  

Energy t r ans fe r  r a t e s  l i s t e d  below pe r t a in  t o  an energy balance, and, 
where applicable,  are combined r a t e s  f o r  f r o n t  and back surfaces .  

%on t o t a l  convective heat- t r a n s f e r  rate i n t o  mater ia l ,  cal/cm2 sec 
(es. (75))  

net  r ad ia t ive  heating r a t e  i n to  material, cal/cm2 sec (eq.  (76)) * 
qvap energy r a t e  due t o  vaporization (pos i t ive  if energy i s  released 

in to  the  mater ia l ) ,  cal/cm2 sec (eq.  (77) ) 

% t o r  rate of increase of s tored energy i n  the mater ia l ,  cal/cm2 see 
(es. (78)) 

x d i rec t ion  convection energy rate of t h e  mater ia l  (pos i t ive  %con 
o u t ) ,  cal/cm2 sec (eq.  (79)) 

y d i rec t ion  convection energy r a t e  of the mater ia l  (pos i t ive  
o u t ) ,  cal/cm2 sec (eq. (80))  qvc on 

qre s r e s idua l  i n  energy r a t e  bslance,  cal/cm2 sec (eq. (81)) 

time in t eg ra l s  of corresponding q values, cal/cm2 (eq. (82) ); 
terms i n  t o t a l  energy balance 

Qre s r e s idua l  i n  t o t a l  energy balance, cal/cm2 (eq. (83))  

R nose radius,  cm 

Rb body radius,  cm (eqs. (@), (50)) 

r a t i o  of base t o  f ront-face laminar convective heating 
normalized by respective enthalpy poten t ia l s ,  f o r  exposed 
back surface,  dimensionless (eq.  (48)) 

RB/F 

Re Reynolds number 

38 



t 

ti 

T 

Tb 

T O  

U 

Ue 

- 
U 

- 
ii 

e f fec t ive  coe f f i c i en t  of r e f l ec t ion  f o r  planar radiat ion,  
dimensionless (eq. (42) ) 

Reynolds number based on enthalpy ve loc i ty  (eq. (C20)) 

un iversa l  gas constant,  ergs/mole OK 

planet  radius,  k m  (eq. (53)) 

transformed t i m e  coordinate, sec (eq. (89) ) 

c o l l i s i o n  cross-sect ion area, cm2 (eq. (C40)) 

atmospheric scale  height,  km (eq. (54 ) )  

i n i t i a l  sca le  height f o r  en t ry  in to  a r b i t r a r y  atmosphere, km 
(eq. (B6)), and contained i n  equation (BlO)  

successive scale  heights  i n  a r b i t r a r y  atmosphere, km: 

- 
s h  = ‘hi when &, <_ Pw2; 

‘h = ‘h2 when - Pw2 < Pw 5 Fw3; 

sh = sh3 when 5, > Tw3 

- 

t i m e ,  sec 

i n i t i a l  time, sec;  time a t  which f r o n t  face  temperature, Tw, 
a r r ives  a t  assumed Twi f o r  wind tunnel  cases (eq. (B4)) 

temperature, OK 

br ightness  temperature (emissivi ty  un i ty ) ,  K 

reference temperature, OK 

v i scos i ty  thickness temperature, OK; temperature a t  which 

0 

1-1 = e . b  (at depth 4) 
hor izonta l  component of t r a j e c t o r y  velocity,  km/sec 

x di rec t ion  ve loc i ty  o f  ex te rna l  gas a t  edge of boundary layer, 
km/sec (eq. (11)) 

veloc i ty  of mater ia l  i n  x direct ion,  cm/sec 

ue . io5, cm/sec 
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U* 

v 

- v 

- 
vs r 

v 

vm 
X 

X r  

Y 

Y 

Z 

a 

a2 

Y 

6 

6X 

6* 

A 

@P 

E 

11 

h 

TT/Ke, dimensionless (eq. (C21)) 

v e r t i c a l  component of  t r a j e c t o r y  ve loc i ty  (pos i t ive  upward) , km/sec 

ve loc i ty  of mater ia l  i n  y d i rec t ion ,  cm/sec 

surface recession r a t e ,  cm/sec (eq. (6a))  

enthalpy veloci ty ,  km/sec; defined as 

free-stream ( t r a j ec to ry )  veloci ty ,  km/sec (eq.  (52a) ) 

V2 = 0.00836 hs (eq.  (13) )  

longi tudinal  coordinate along meridian, em 

f l o w  l i n e  r a t i o ,  dimensionless; defined by equation (68) 

t ransverse coordinate normal t o  surface (inward) , em 

boundary-layer transverse coordinate, em; appendix C 

s t a b i l i t y  parameter f o r  f i n i t e  differencing, dimensionless; 
(eq.  (96) ) ;  must be < - 1/2 

absorption coe f f i c i en t ,  i n t e r n a l  rad ia t ion ,  em-’ (eq.  (41) )  

absorption coef f ic ien t ,  gas-cap rad ia t ion ,  em-’ (eq.  (41) )  

t r a j e c t o r y  angle, deg, pos i t ive  above horizontal  (eq.  (52b) ) 

increment (appendix C )  

mass f r ac t ion ,  dimensionless (eq. (C10)) 

displacement thickness, em 

thermal thickness,  em (eq.  (63 ) ) ;  also increment e .g . ,  
Ah = enthalpy poten t ia l ,  cal/g 

unspecified cha rac t e r i s t i c  boundary-layer thicknesses,  em 
(appendix C ) 

viscos i ty  thickness, em; depth a t  which p = e.pw 

surface emissivity,  opaque o r  semitransparent; e f f ec t ive  emissivity, 
transparent (eqs . (73) , (74) ) ; dimensionless 

transformed y coordinate, em (eq.  (90)); a lso  dummy variable  

mean f r e e  path, em 

viscosi ty ,  poise 
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I 0 

I 
j 
! 

7 

cp 

X 

Xvap 

x1 

a 

BF 

C 

cha 

d 

e 

eq 

m 

dens i ty  of ab la t ing  material  (constant) ,  g/cm3 

dens i ty  r a t i o  across  normal shock, dimensionless; f o r  wind tunnel  
cases, assigned; f o r  f l i g h t  cases, equations (61) and (62) 

free-stream atmospheric dens i ty  i n  Ear th  sea-level atmospheres, 
dimensionless, ~ / 1 2 2 6  

values assigned t o  at which changes of scale height  i n  an 
arbitrary atmosphere occur; see Shl, sh2, S b  

Stefan constant,  1 . 3 6 9 ~ 1 0 - ~ ~  cal/cm2 sec OK4; a l so  P rand t l  number, 
dimensionless 

shear,  dynes/cm2 

approximation of t h e  r a t i o  of s tored  energy t o  t h e  s tored  energy 
associated with an exponential  temperature p r o f i l e ,  dimensionless 
(eq.  (64 ) )  

surface recession, cm 

surface recession due t o  vaporization, em; Xvap = FtX (eq. (67))  

c h a r a c t e r i s t i c  recession depth, cm, used i n  tumbling cor rec t ion  
(es .  (12 ) )  

convective heat  blockage f ac to r ,  dimensionless (eqs .  (16), (28))  

modified convective heat  blockage f a c t o r ,  dimensionless (eqs .  ( 2 2 ) ,  
(24) ) 

Sub s c r i p t s  

a c t u a l  

back face  

c o n t  inuum 

change of wind tunnel  condi t ions 

d i f  f’us ion 

ex te rna l  gas or outer  edge of boundary layer  

e qu i l i b  r i u m  

f r o n t  face  
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F M  

i 

max 

0 

oc 

of f  

r 

re f  

S 

U 

W 

we 

wd 

WFM 

1 

2 

03 

free molecule 

i n i t i a l ;  t h i s  subscr ipt  can be combined with the  others  

no blowing 

no blowing, continuum 

shut of f  of wind tunnel 

reverse 

reference 

stagnation (or s e t t l i n g  chamber) 

undissociated 

vapor expelled 

w a l l  ( f ron t  f ace )  

w a l l ,  continuum 

w a l l ,  d i f fus ion  

w a l l ,  f r e e  molecule 

dummy variable  

behind normal shock; a l so  average condition between shock wave and 
body (appendix C )  

f r e e  stream 

Superscript  

I x der ivat ive 
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APPENDIX B 

EQUATIONS FOR STARTING VALUES 

To start  the  so lu t ion  t o  equation (1) , it i s  necessary t o  ass ign i n i t i a l  
These w i l l  normally consis t  of  a r e l a t i v e l y  low temperature pro- conditions.  

f i l e  which can e x i s t  before  the  onset of ablat ion.  The pa r t i cu la r  se lec t ion  
of i n i t i a l  conditions i s  general ly  not c r i t i c a l  as  t h e i r  influence damps out 
i n  a short  time. The i n i t i a l  temperature p r o f i l e  t h a t  we assume i s  an expo- 
n e n t i a l  type.  

If Twi i s  selected near To, t h i s  p r o f i l e  amounts t o  a small per turbat ion 
on the constant To p ro f i l e .  We can take the  y der ivat ive of  Ti a t  
y = 0, equate it t o  the r a t i o  of the heat  f l u x  (eq. (46) )  t o  thermal conduc- 
t i v i t y  a t  the  wall, and solve f o r  t he  i n i t i a l  thermal thickness, A i .  

We use the  more simple approximation: 

where B16 = 1 f o r  t he  transparent case and B16 = 0 f o r  the  opaque and semi- 
transparent cases.  A s  described below i n  the  section, F l igh t  Cases, one 
option allows A i  t o  be assigned a value instead of obtaining it f r o m  equa- 
t i o n  (B2b). 
t i o n  (B2b) are obtained d i f f e ren t ly  f o r  wind tunnel  or f l i g h t  as  described 
below. 
needed. For wind tunnel  calculat ions,  D i  w i l l  be known; f o r  f l i g h t ,  D i  can 
be assigned or calculated as described below. 

The i n i t i a l  convective and rad ia t ive  heat f luxes needed i n  equa- 

I n  ca lcu la t ing  qwi and qRi, the i n i t i a l  free-stream density,  D i ,  i s  

Ablation i n  a Wind Tunnel 

The s t a r t i n g  of  a wind tunnel  i s  visual ized as a sudden s t ep  of a heat 
f lux.  
convective and r ad ia t ive  f luxes .  

We define a combined i n i t i a l  heat f lux ,  qwRi, as the  sum O f  the  i n i t i a l  
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W e  assume t h a t  q = 1 and t h a t  the  convective heat  t r a n s f e r  i s  i n  the  
continuum regime (Qmi i s  not ca lcu la ted) .  With qwi = soci we have: 

* 

qwRi = gOci + qRi 

W e  evaluate %ci from equation (15) and qRi from equation (44), with qU = 1, using Twi f o r  Tw. If Twi  i s  small, qoci and therefore  
a re  approximately constant f o r  a short  period of t i m e  (eq. (15)). 
c a l  conduction problem with a constant heat f l u x  and constant propert ies  
( r e f .  26, p. 56) can be used as an approximation f o r  t h i s  case t o  determine 
the time a t  which the  f r o n t  face  temperature arrives a t  the  assumed Twi .  
This tu rns  out t o  be: 

The c l a s s i -  

One can s e t  
computing program a smooth s tar t .  

Twi 2 To; the grea te r  value i s  not necessary, but  it gives the  

F l igh t  With Arbi t rary I n i t i a l  Conditions 

I n  s t a r t i n g  the  f l i g h t  calculat ions,  we w i l l  use an assigned i n i t i a l  
ve loc i ty  VWi and a f l i g h t  path angle, yi, a t  ( a r b i t r a r y )  time, t i  = 0 .  The 
i n i t i a l  atmospheric density, D i  (equivalent t o  a s t a r t i n g  a l t i t u d e ) ,  can be 
assigned, as wel l  as an i n i t i a l  thermal thickness, A i .  With an assumed Twi, 
t he  i n i t i a l  p r o f i l e  i s  determined f r o m  equation (Bl). Using t h i s  s t a r t i n g  
procedure, we do not requi re  t h a t  A i  be consis tent  with the re la t ionship  
given i n  equation (B2b). However, we ca lcu la te  qwi, qRiy and qwRi as  f i g -  
u re s  of i n t e r e s t  as described below i n  the  section, I n i t i a l  Conditions f o r  
Entry F l igh t .  

I n i t i a l  Conditions f o r  Entry F l igh t  

An a l t e rna t ive  s t a r t i n g  procedure, va l id  f o r  an en t ry  f l i g h t ,  i s  t o  use 
an assigned VWi and y i  and an assumed. Twi, and t o  ca lcu la te  the  en t ry  in to  
an exponential atmosphere [D = Ce-(A1t/Shi) 1 which ' w i l l  r a i s e  the f ron t  face 
temperature t o  the assumed T w i .  The convective heating during t h i s  i n i t i a l  
p a r t  of the  en t ry  w i l l  be considered t o  be of the  free-molecule type (and we 
do not ca lcu la te  sei). We can wri te  (eq.  (19)) : 

where 

44 



5, 
The evaluat ion of rtu i n  equat ion (12) spec ia l i ze s  t o  

- - 
K t u  = K 

so we have 
- 

qwi = KqglMi 

W e  evaluate 
have 

qFMi from equat ion (l7'), and using equations (B3a)  and (44), we 

J 

where we use V i  as an approximation f o r  Vmi. 

The quant i ty  qwRi i s  t h e  heat ing rate a t  t i m e  ti = 0. Up t o  t i m e  
ti = 0, the  heat  f l u x  w i l l  be approximately an exponential  funct ion of t i m e ,  
through the  exponential  va r i a t ion  of D. 
l e m  i n  heat  conduction ( r e f .  26, p .  45) which y i e lds  an exponential  tempera- 
ture p r o f i l e .  I n  equation (B5) we can replace D i  by D as an exponential  
func t ion  of a l t i t u d e ;  we can approximate the  s l i g h t l y  varying enthalpy poten- 
t i a l  as a constant ( t h e  value i n  eq. ( B 5 ) ) ;  and we can in t eg ra t e  the  heating 
f l u x  over t i m e  from t = --w t o  t = ti = 0. W e  obtain,  then, the t o t a l  heat  
ab sorbed : 

This i s  s i m i l a r  t o  a c l a s s i c a l  prob- 

ShiEAcqDi(Vi2 - 0 - 00836 'EpTwi) Shia4RiDi E5 V i  E 6 - 1  
+ -  (B6 1 - 

Q t o t a l  - 
0.0836 l s i n  ril E5ls in  T i l  

W e  can a l so  approximate t h e  t o t a l  heat  absorbed as 

When we s u b s t i t u t e  t h e  p r o f i l e  equation ( B l )  i n t o  equation (B7) ,  we obtain 

or, approximated f'urther, 

&total x Pcwi (Twi - T0)A-i (B8b)  

W e  s u b s t i t u t e  
r i g h t  s ide  of eq. ( B 5 ) )  i n t o  equation (B2b) f o r  
t i o n  (B8b), and have f i n a l l y  

qwi and qRi ( the  f i rs t  and second t e r m s ,  respect ively,  on t h e  
A i ,  put  this i n t o  equa- 
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W e  now eliminate 
t i o n  of t he  form 

Qtotal f rom equations (B6) and (Bg) and we obtain an equa- 

(II~ + 5 E5 D F 5 )  (Di + KiDE5) = K2 

where K 1  and Kz are  constants and Di i s  t he  only unknown. 

The procedure, then, f o r  s t a r t i n g  the  en t ry  ca lcu la t ions  i s  as  follows. 
We assume a T,i and we know the  sca le  height, Shi, far  out i n  an atmosphere. 
We use equation (B10) t o  ca lcu la te  D i ;  we can then ca lcu la te  qwi and qRi as 
the  f i r s t  and second terms, respect ively,  on the  r i g h t  s i d e  of  equation ( B 5 ) .  
Finally,  we obtain Ai from equation (B2b), and we put Ai in to  the p r o f i l e  
equation ( B l ) .  W e  can see t h a t  t he  assumption of  Twi f i x e s  the  D i ,  or, i n  
e f f ec t ,  f i x e s  the  a l t i t u d e  a t  which we start  t i m e  zero .  For t h i s  case, 
Twi > To i s  necessary i n  order t o  have a f i n i t e  s t a r t i n g  a l t i t u d e .  
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APPENDIX C 
1 

BRIDGING BE" Fm-MOLECULE AND CONTINUUM REGIMES 

For a number of appl icat ions or s i tua t ions ,  it i s  known t h a t  t he  c l  
i 

d 1 
i J  

1 
t r a n s i t i o n a l  regime between free-molecule and continuum flow must be consid- 
ered. The br idging formulas used i n  t h i s  work for the  t r a n s i t i o n a l  regime a re  
presented without derivations,  in  the ANALYSIS AND METHOD OF SOLUTION sec t ion  
as equations (18), ( 2 0 ) ,  (24), (37), (40), and (57). The der ivat ions of these 
equations, based p r inc ipa l ly  on a simple k ine t i c  theory model, are given i n  

which were of purely empir ical  form (ref.  1). 
r t h i s  appendix. These br idging formulas replace previously used equations 

I 

Front Face Normal Velocity 

For the f r o n t  face normal ve loc i ty  or mass loss r a t e ,  a bridging 
re la t ionship  i s  required between the  free-molecule and continuum regimes. We 
w i l l  consider f irst  the  free-molecule or reac t ion  rate-control led regime, and 
we will dis t inguish  between the  evaporation or sublimation case and the  
chemical reac t ion  case.  

For the  case involving evaporation or sublimation, we wri te  the  Langmuir 
equation (eq. (76) of  r e f .  27) for the  mass loss r a t e  i n to  a vacuum as: 

where the  constant, cdy, i s  the pressure of  a standard atmosphere i n  
dynee/cm2 so t h a t  pve i s  measured i n  atmospheres, mv i s  the  molecular 
weight i n  g, and Rg i s  the universa l  gas constant i n  erg/mole OK. Equa- 
t i o n  ( C l )  i s  based on the r a t e  of molecules crossing a u n i t  area,  i n  t h i s  
case impacting against  a u n i t  surface area, and the  accommodation coe f f i c i en t ,  
Acv, i s  the  f r ac t ion  o f  t he  molecules t h a t  s t i c k  t o  the surface and condense. 
A t  equilibrium the  evaporation and condensation r a t e s  a re  equal so there  i s  
then no net  evaporation rate. A t  a given temperature, the r a t e  of surface 
impacts, and therefore  t h e  rate of condensation, i s  proportional t o  the  ac tua l  
vapor pressure above the  surface,  p,. 
r a t e  : 

So we can wri te  f o r  the  condensation 

and for t he  ne t  r a t e  of evaporation (or sublimation) 



If the  equilibrium vapor pressure i s  s h i f t e d  o r  modified by t h e  presence of 
o the r  gaseous materials i n  t h e  boundary layer , then the  largest a c t u a l  vapor 
pressure a t  t h e  surface,  p,, t h a t  can be reached i s  the  modified equilibrium 
vapor pressure, pm (see eq. (26)), r a t h e r  than pve. We accordingly modify 
equation (C3b) and use the  approximate expression: 

For the  chemical reac t ion  case w e  rewrite t he  Arrhenius rate equation 
f o r  a f i r s t  order  reac t ion  (eq. (39e)) as 

When the  modified equilibrium vapor pressure,  
the  ne t  reac t ion  r a t e  i s  zero, o r  t h e  reverse reac t ion  rate equals the  forward 
reac t ion  r a t e .  A t  a given temperature, the ra te  of impact of vapor molecules 
with the  surface w i l l  again be proport ional  t o  the a c t u a l  vapor pressure a t  
t he  surface,  pv. We can assume t h a t  t he  reverse  reac t ion  rate,  Rir, i s  propor- 
t i o n a l  t o  the rate of surface impacts and therefore  t o  the  a c t u a l  vapor pres-  
sure, pv, and we again have equation (C3c) f o r  the ne t  reac t ion  r a t e .  

p,, e x i s t s  above the  surface,  

W e  now consider the  continuum o r  d i f fus ion  cont ro l led  regime f o r  the  
f r o n t  face  mass loss  ra te .  The l imi t ing  value of t he  d i f fus ion  cont ro l led  
f r o n t  face  normal veloci ty ,  ITwcl, i s  given i n  equation (38), and we define 
$i& = plTwcl (obtained by put t ing  p on the  l e f t  s ide  of eq.  (38) ) ,  as the 
l imi t ing  value or maxir” mass d i f fus ion  ra te .  As noted i n  the  discussion 
following equation ( 3 8 ) ,  t h i s  evaluat ion i s  obtained using P and + which 
u l t ima te ly  depend on the  modified equilibrium vapor pressure a t  the  surface,  
p,. 
the  a c t u a l  mass t r ans fe r  rate by d i f fus ion .  The a c t u a l  rate can be shown t o  
be approximately proport ional  t o  the  a c t u a l  vapor pressure a t  t he  surface,  

by in se r t ing  ac tua l ,  r a t h e r  than l imit ing,  evaluat ions of P and + i n t o  
equation (38) .  I n  these  a c t u a l  evaluations,  P w i l l  be based on p, r a the r  
than p, and the  asymptote i s  assumed t o  be 0 with B l i  a 1. W e  then 
ob-tain 

A s  d i s t i n c t  from the  t h e o r e t i c a l  o r  l imi t ing  value, Ed, we next consider 

PvJ 

This i s  straightforward when pm < pt-. When pm >_ p t  , a modification i s  
necessary because i n  equation (38) we have, i n  e f f e c t ,  given 
l i m i t  of 0.999,999 pt2.  

? 
p, an upper 

I n  t h i s  case we have 
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I 

L e t  

and we have equation (c5a) with kd' replacing &. 
If a quasi-steady state i s  assumed, there i s  no accumulation o r  deplet ion 

of vapor i n  the  boundary layer .  Thus the  a c t u a l  mass loss rate ca lcu la ted  by 
the  free-molecule ( reac t ion- ra te )  method, and t h e  a c t u a l  m a s s  loss rate calcu- 
l a t e d  as a d i f fus ion  process must be  the  same; phys ica l ly  t h i s  means t h a t  
t he  a c t u a l  vapor pressure at t h e  surface,  pv, must have a value such tha t  
obtained from equations (C3c) and ( C 5 )  w i l l  be t h e  same. 
between equations (C3c) and (C5a) and obta in  

m" 
W e  e l iminate  pv/pm 

A t  high mass loss rates, one can surmise t h a t  d i f fus ion  cont ro l  may merge in to  
a hydrodynamic con t ro l  with an in t e r f ace  between the two f l u i d s .  I n  t h i s  case, 
equation (38) may y ie ld  values of t he  "diffusion" rate t h a t  are too la rge  a t  
t h e  high m a s s  loss rates. F i n i t e  values of t h e  "diffusion" rate w i l l  be 
obtained from equation (38) when the  $ asymptote E35 = 0, and B 1 1  = 1. 
For the  (somewhat unusual) s i t u a t i o n  when 
t h a t  one use E35 = 0 and Bll 
l a t e d  using equation (38), does not become unrea1istica;ly l a rge . .  For the  
condition with pm>_ pt2,  we should ac tua l ly  replace ??id with iiid' i n  
equation ( C 7 ) .  
i n  which &FM w i l l  be small r e l a t i v e  t o  (whose ca lcu la ted  value may be 
too la rge)  and &' w i l l  be s t i l l  l a rge r .  A s  an approximation f o r  a l l  
conditions, we w i l l  accordingly, use equation ( C 7 )  with 

pvm/Pt, > 0.8, it is suggested 
1; t h i s  insures t h a t  f%d = plTwcl , as calcu- 

However, t h i s  s i t u a t i o n  w i l l  genera l ly  be one of rate con t ro l  

&. 
When we cancel  out  t h e  constant densi ty ,  p, from equation (C7), we have 

equation (40) f o r  t h e  f r o n t  f ace  normal veloci ty ,  Vw. A somewhat s imi la r  l i n e  
of reasoning for the  evaporation case i s  i n  reference 28 although br idging 
equations are not  presented. 
considered t o  be v a l i d  approximations over the  complete spectrum from rate  
con t ro l  t o  d i f fus ion  cont ro l ;  the use of the  br idging r e l a t ionsh ip  automati- 
c a l l y  places  con t ro l  i n  t h e  proper regime. Some v e r i f i c a t i o n  o f  t h i s  br idging 
r e l a t ionsh ip  i s  given i n  figure 5 by t h e  comparisons between ca lcu la t ions  and 
experiment f o r  t he  ab la t ion  of Teflon i n  a wind tunnel.  These examples are 
e s s e n t i a l l y  reac t ion  rate control led,  except f o r  hs = 3000 Btu/lb which i s  
considered t o  be  i n  t h e  t r a n s i t i o n a l  regime. 

These br idging forms (eqs.  (40) and (C7)) are 
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Convective Heat Transfer 

To ca lcu la te  heat transfer i n  the t r a n s i t i o n a l  regime, we require a 
bridging between the continuum and free-molecule heat t r ans fe r  values given by 
equations (16) and (17). The bridged r e s u l t  i s  shown i n  equation (18). A 
very simple f i r s t - c o l l i s i o n  model i s  used i n  the  analysis .  
of f r e e  molecules i s  assumed t o  en ter  the  boundary l aye r  and make a f irst  
c o l l i s i o n  with molecules already there .  
of the continuum boundary layer  with average energy equal t o  t h a t  of the  
boundary layer  a t  the  point  of t h e  co l l i s ion .  
molecules on c o l l i s i o n  i s  assumed t o  be u l t imate ly  taken up by the wall  (by 
successive co l l i s ions  i n  the  continuum boundary layer and impact with the  
w a l l ) ,  s ince there  i s  no p i l i n g  up of energy i n  a quasi-steady s t a t e  boundary 
layer .  
w a l l  and give up energy d i r e c t l y . )  

A t yp ica l  packet 

The free molecules then become p a r t  

The energy given up by the  f r e e  

(Some of the  free molecules w i l l  make t h e i r  f i rs t  co l l i s ion  with the  

- 
We use a normalized enthalpy, h = h/hs, and the  coordinate system shown 

co l l i s ions  occurring within + have 
an e f f e c t  on w a l l  heat t ransfer ,  while 
co l l i s ions  occurring outs ide of + 
have a negl ig ib le  e f f ec t  on w a l l  heat 
t r ans fe r ;  + 
ary  layer  thickness .  We can rewrite 
equation (17) as 

i n  sketch ( d ) .  W e  define an e f fec t ive  co l l i s ion  thickness,  4, such t h a t  

i s  thus a kind of bound- 

qFM = K1(DVoo)hs(l - Ew) (c8) 

Y 

0 where K 1  contains the  conversion of 
u n i t s  and the  accommodation coefficient.  

Sketch (d)  Acq (assumed t o  be approximately uni ty) .  
Then, f o r  a small packet of molecules 

enter ing the  boundary layer  and making i t s  f i rs t  co l l i s ion ,  our assumed model 
a l l o w s  us  t o  wri te :  

where 6X i s  t h e  mass f r a c t i o n  of molecules t h a t  make the  f i r s t  co l l i s ion  
between h and E + dE) i n  the  boundary layer ;  6qm 
i s  heat given up by the  f r a c t i o n  6X.  I n  using K 1  i n  equation ( C 9 ) ,  we are 
assuming t h a t  t he  f r a c t i o n  of energy given up i n  the  molecular co l l i s ions  i s  
the  same as the  f r ac t ion  given up by co l l i s ions  with the  w a l l  (approximately 
u n i t y ) ;  t h i s  i s  thought t o  be within the  framework of  approximations being 
made i n  the  der ivat ion.  The mass f r ac t ion ,  6X, i s  evaluated i n  t e r m s  of the  
mean f r e e  path, A (ref.  29, eq. (103-7)).  

- 
Y and Y + dY (or between 

-Y/A dy 
A 6X = e 
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The mean f r e e  path, A, i s  ac tua l ly  a funct ion of Y since A var ies  inversely 
with densi ty  i n  the  boundary layer .  W e  will consider A t o  have some con- 
s t a n t  mean value i n  the  boundary layer  i n  order t o  ili 
(below). This assumption appears t o  be within the  1 being made. I n  accord with our quasi- s teady-state  

si 

I 
1 perform an in tegra t ion  

framework of approximations 
assumption, we wri te  

qqw = 1 
a l l  6X 

and using equation ( C ? )  we have 

We i n s e r t  6~ f r o m  equation ( ~ 1 0 )  

W e  w i l l  use:  

E ~ F M  

= I  
a l l  6X 

and have : 

6X(1 - E) 

1 - h  
1 - h, 

and we can wri te :  

e-y/A dY .+  e -Aq/A (c15) 1 - 
A 

%w 

[hSKdDV,) 1 
The last  term i n  the  bracket accounts f o r  heat t r ans fe r  from the  molecules 
whose f r e e  path i s  grea te r  than % ( r e f .  29, eq.  (103-8)). Using equa- 
t i o n s  ( C 8  and C 1 4 )  we have f i n a l l y  

L J 

We will use the  simplest form f o r  f(Y/+) i n  equation (C14) (see sketch ( d ) ) .  

a 



We perform the  in t eg ra t ion  i n  equation (c16) and obta in  

To consider a va r i a t ion  i n  the  r a t i o ,  A/+, we can v i sua l i ze  a change i n  
ambient density,  D. The m e a n  f ree  path, A, varies as D - l ,  and + (being a 
kind of boundary l aye r  thickness)  varies as 
as D-1'2. I n  t he  free-molecule l i m i t ,  A/+ becomes very large,  and i n  the  
continuum l i m i t ,  very small. When A/+ i s  large,  qqw approaches qFM i n  
equation (c18), as it should. When A/+ i s  small, qqw must approach qqc. 
Using equation ( C 1 8 )  we can write f o r  small 

D-1'2, so  t he  r a t i o ,  A/+, var ies  

A/+ 

The quan t i t i e s ,  qFM and qqc, are ca lcu la ted  values f o r  given ( t h e  same) condi- 
t i o n s .  Since the  c h a r a c t e r i s t i c  thickness,  +, has not been specif ied,  it can 
now be given the  value t h a t  sa t isf ies  equation (Cl9b) f o r  t h e  conditions 
imposed. The mean free path,  A, has been considered t o  be some mean value i n  
the  boundary layer ,  and it can be assigned a convenient value, say Az, with + required t o  s a t i s f y  equation ( C l g b )  wi th  t h i s  A. It can be  shown t h a t  
t he  form of equation (Clgb) i s  a cons is ten t  r e l a t ionsh ip  by making use of 
equations (5.5) ,  (6 .23) ,  (6 .25) ,  (6.56) of reference 30, and r e l a t i n g  A t o  
a c h a r a c t e r i s t i c  thickness  (displacement thickness,  6"). 

We subs t i t u t e  equation (Clgb) i n t o  (c18) and we have equation (18) as 
the  br idging equation f o r  convection heat  t r a n s f e r .  

Equation (18) has the  form of a monotonic funct ion of qm/qqc, and it has 
the  cor rec t  free-molecule and continuum regime asymptotes. The der ivat ion 
has been e s s e n t i a l l y  performed from the  free-molecule end, and the  agreement 
with the  continuum end has been forced.  I n  the  der ivat ion,  func t iona l  forms 
f o r  f(Y/Aq) o ther  than t h e  simple one chosen (eq. ( C l 7 ) )  can be used. The 
r e s u l t  w i l l  be s imi l a r ly  behaved, bu t  more complicated, br idging equations.  
It i s  possible  t h a t  t he  more complicated equations t h a t  can be obtained may 
give b e t t e r  agreement with measured da ta  f o r  some spec i f i c  types of heat 
t r a n s f e r  . 

The a l t e r n a t e  forms of the  br idging r e l a t i o n s  (eqs.  (20) t o  (24 ) )  are 
obtained d i r e c t l y  from equation (18) as out l ined  i n  the  ANALYSIS AND METHOD OF 



- 
and $ q0, SOLUTION sect ion.  

(which a re  mainly of conceptual i n t e r e s t ) .  
The a l t e r n a t e  forms y i e ld  the  quan t i t l e s ,  so, 

Comparisons of ca lcu la ted  br idging with experiment are ava i lab le  f o r  the  
case with no blowing. Experimental data,  obtained from f igu re  5 of refer- 
ence 31, are shown p lo t t ed  i n  f igu re  7 and compared with ca lcu la ted  values of 

continuum heat  t r ans fe r?  free-molecule 
heat  t r ans fe r ,  and the  bridged heat  
t ransfer  value obtained from equa- 
t i o n  (20) .  
s tagnat ion -point heat  - t ransf  e r  measure - 
ments on a spher ica l  body a t  nominal 
Mach numbers of 5.7 and 8 with stagna- 
t i o n  temperatures of 2 1 0 0 ~  t o  2 3 0 0 ~  R.  

~ EQUATION (20) The quan t i t i e s ,  (eq.  (15)), qFM 
( e s -  ( 1 7 ) ) ~  and goo ( eq -  (20)) are a l l  

t r a n s f e r  rate with zero v o r t i c i t y ,  

The da ta  shown are 

EQUATIONS (15, 17) __ 
EQUATION (151 ____ 

Y Z Z  EXPERIMENT, REF 31 
M,=5.7, 8 - normalized using the  continuum heat-  

Figure 7. - Comparison of ca lcu la ted  convective qoc . This normalizing f a c t o r  i s  

obtained from equation (15) with the  

10 102 io3 lo4 
Re* 

heat  t r a n s f e r  br idging with experiment f o r  
the case without blowing. 

V O r t = O  

v o r t i c i t y  cor rec t ion  dropped (C, = 0 ) .  The Reynolds number used as abscissa? 
Re,, i s  based on the  enthalpy ve loc i ty  (eq.  (13b))  and the  s tagnat ion gas 
proper t ies?  as o r i g i n a l l y  used i n  reference 31. 

Vp DR 
Res  = 

10Ps 

I n  the  experiments of reference 31, t he  Reynolds number w a s  var ied by mainly 
varying the free-s t ream density,  D, and the nose radius,  R .  It i s  seen from 
the  f igu re  t h a t  t he  ca lcu la ted  br idging checks w e l l  wi th  experiment. 

Comparisons w e r e  a l so  made (not  shown here) with measured da ta  from 
reference 32 f o r  subsonic heat  t ransfer  from spheres. 
these da ta  reasonably w e l l .  

Equation (20) checks 

It i s  concluded from the  comparisons made t h a t  t he  br idging r e l a t i o n  i n  
equation (18) should be a u s e f u l  approximation f o r  t he  general  case with blow- 
ing s ince equation (20) i s  simply a spec ia l i za t ion  (with t h e  form unchanged) 
of equation (18), and equation (18) has the  cor rec t  asymptotes f o r  the general  
case.  Experimental v e r i f i c a t i o n  f o r  t he  blowing case would be des i rab le .  

Surf ace Shear 

For the ca lcu la t ion  of t he  (x  der iva t ive  o f )  surface shear i n  the  
t r a n s i t i o n a l  regime, we  br idge between equations (35) and (36) t o  obtain equa- 
t i o n  (37).  The f i r s t  c o l l i s i o n  model used i s  the  same as that used f o r  con- 
vect ive heat t ransfer ,  except t h a t  we are now concerned with the  transfer of 
x momentum r a t h e r  than energy. 

53 



0 

Sketch ( e )  

W e  use t h e  coordinate system shown 
i n  sketch (e),  and we introduce 

L 

- 
(c21) 

U - -  ( dE/dx)x=o 
- u* = - 

( d c e / k  1 x=o ue 

W e  assume t h a t  c o l l i s i o n s  occurring 
within an e f f e c t i v e  c o l l i s i o n  th ick-  
ness, AT (a  kind of boundary l aye r  
th ickness) ,  a f f e c t  surface shear, while 
those occurring outs ide A, have a 
negl ig ib le  e f f e c t .  Making use of equa- 
t i o n  (11) , we rewrite equation (36) as 

where K4 
A,,, considered t o  be  approximately un i ty .  
analogous development as t h a t  used f o r  convective heat  t r ans fe r ,  we can write 

contains the  conversion of u n i t s  and the  accommodation coe f f i c i en t ,  
Using the  same reasoning and 

a l l  6X 

We evaluate 6X according t o  equation (C10) and obtain:  

We use (see sketch ( e ) )  

1 - u* = f (&) 
and have 
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I A s  w a s  done with the  convective heat t r ans fe r  bridging,we evaluate 
f ( Y / & )  i n  the  simplest way (see sketch ( e ) ) :  

The in tegra t ion  of equation (c26) then y ie lds  

The r a t i o ,  A/+, becomes very la rge  i n  the  free-molecule l i m i t  and very s m a l l  
i n  t h e  continuum l i m i t  i n  a manner similar t o  
Convective H e a t  Transfer s ec t ion ) .  When A/& i s  large,  7; i n  equa- 
t i o n  (c28) approaches T $ ~ M  as it should. When A/& i s  small, r$ must 
approach -I-&. From equation (c28) we ge t  

A/Aq (as described above i n  the 

Since the cha rac t e r i s t i c  thickness,  AT, has not been specified,  it can now be 
defined as having values t h a t  s a t i s f y  equation (C29). 
bridging re la t ionship  t o  have the  cor rec t  continuum asymptote. 

W e  a re  thus forcing our 

We can show d i r e c t l y  t h a t  equation (C29) i s  a consis tent  re la t ionship  by 
making use o f  equations (5.6, 6.23, 6.25, 6.29, 6.30, 6.32, and 6.41) of 
reference 30. 
heat - transf e r  r e l a t ions  t h a t  we have. 
and (36) we obtain 

W e  can a l so  show the  consistency of equation (C29) by using the  
By combining equations (16) , (17) , ( 35) , 

- 

W F M  Acm JFZ 
Then, using equation (Clgb), we have 

This gives equation (C29) when 
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When we s u b s t i t u t e  equation (C29) i n t o  (c28),  we have the  bridging 
r e l a t i o n  f o r  t he  x gradien t  of surface shear.  

If func t iona l  forms f o r  
are chosen f o r  t he  der iva t ion  given above, the  br idging equations w i l l  be more 
complicated than equation (37) bu t  similarly behaved. It i s  poss ib le  t h a t  
some of t he  more complicated forms may fu rn i sh  more accurate  bridgings f o r  
some spec i f i c  shear s i t u a t i o n s .  

f ( Y / O , )  o ther  than t h e  simple one i n  equation ( C 8 )  

Direct  experimental ve r i f i ca t ions  of equation (37) appl ied t o  the  
s tagnat ion region with blowing have not been found. However, it i s  bel ieved 
t h a t  t h i s  r e l a t ionsh ip  i s  a reasonable and use fu l  approximation f o r  surface 
shear i n  t h e  t r a n s i t i o n a l  regime. The expression i s  a monotonic funct ion of 
T & ~ / T &  and it has t h e  cor rec t  free-molecule and continuum regime asymptotes. 

Although equation (37) was  derived f o r  a stagnat ion region boundary 
layer ,  it i s  of poss ib le  i n t e r e s t  t o  compare ca lcu la ted  resul ts  with subsonic 
f l a t  p l a t e  shear measurements s ince these da t a  are ava i lab le .  This comparison 
i s  shown i n  f igu re  8. The measured da ta  are from f i g u r e  9(a) of reference 32. 

The agreement shown i n  f igu re  8 i s  
thought t o  be surpr i s ing ly  good. 

A n  attempt w a s  a l so  made t o  
compare ca lcu la ted  shear from equa- 
t i o n  (37) with measured shear i n  low 

reference 33 (not  shown) ; t he  agreement 
. 16 'Mm< 71 obtained w a s  f a i r .  A n  equation derived 

f o r  Couette flow b y  the  authors of 

c losely;  t h i s  i l l u s t r a t e s  t h a t  one 
should genera l ly  p re fe r  a bridging 
equation derived f o r  a spec i f i c  si tua- 

I 

CD 

t-- 'FM 

I speed Couette flow as reported i n  
o EXPERIMENT. REF 32 

- EQUATION (37) 

I r e ference 33 checks the  da t a  very 
I I 10 

CDC/CDFM 

Figure 8 . -  Comparison of calculated skin f r i c t i o n  
br idging with measured skin f r i c t i o n  f o r  
subsonic flat p l a t e  (without blowing). t i o n  i f  t h i s  be ava i lab le .  

Drag Bridging 

For f l i g h t  ca lcu la t ions ,  we use the  t r a j e c t o r y  equations (52) t o  ( 5 4 ) ,  
i n  which t h e  quant i ty ,  M/C$, appears. The evaluatLons of CD and M/Cj$ are 
given i n  equations (57) and (59),  respect ively,  equation (57) being the  
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bridging f o r m l a  f o r  CD. A bridging r e l a t i o n  f o r  the  drag coe f f i c i en t  i s  
c l e a r l y  necessary f o r  en t ry  f l i g h t s  since CD must i n i t i a l l y  have a f r e e -  
molecule evaluation, and, f o r  many en t r i e s ,  the  f i n a l  value of CD w i l l  be 
the  continuum value. 

To evaluate the  drag bridging, we again make use of our f i r s t - c o l l i s i o n  
model ( i n  a treatment t h a t  amounts t o  a fu r the r  approximation with the  model). 
We again use an unspecified cha rac t e r i s t i c  e f f ec t ive  c o l l i s i o n  thickness,  AD, 
and assume t h a t  co l l i s ions  outs ide of 
We assume, then, t h a t  the  molecules t h a t  have a longer f r e e  path than 
make t h e i r  f i r s t  e f f ec t ive  co l l i s ion  with the  body and contribute t o  f r e e -  
molecule drag. The other  molecules co l l i de  with each other  within the  depth, 
AD; these molecules bathe the  body i n  a continuum f l u i d  and contr ibute  t o  con- 
tinuum drag. A more rigorous development would require  AD to  vary with posi- 
t i o n  on the  body, bu t  we will take AD t o  be some average value f o r  the whole 
body. Similarly,  t he  value of the  mean f r e e  path of the  molecules near the  
body w i l l  depend on pos i t ion  on the  body, bu t  we w i l l  use a nominal or 
averaged mean f r e e  path, A2, f o r  the  gas between the  shock wave and the  body. 

AD have a negl igible  e f f e c t  on drag. 
% 

According t o  our model, we can sum the free-molecule and continuum drags 
and obtain 

The dynamic pressure ra t ios  a re  evaluated as  densi ty  or m a s s  f r ac t ion  r a t i o s :  

Combining equations (C34) with (C33b), we have 

We can i n s e r t  the quantity,  Eg, f r o m  equation (58) i n to  equation (C35) t o  
obtain 



We observe t h a t  equations (C35) and (C36) have the  cor rec t  asymptotes. 
variable,  A,-,/A2, i s  a rec iproca l  Knudsen number. To t h i s  point,  t he  deriva- 
t i on  i s  similar t o  t h a t  found i n  reference 34, bu t  from a somewhat d i f f e ren t  
point  of view. i s  specif ied as the  shock standoff d i s -  
tance, evaluated empir ical ly  i n  t e r m s  of 
roca l  Knudsen number i s  then mult ipl ied by a constant f a c t o r  t o  f i t  
experimental data .  

The 

I n  reference 34, AD 
p2, and R f o r  a sphere; t h i s  rec ip-  

W e  can pos tu la te  a func t iona l  form f o r  AD as 

AD = f,(R, Re,, &, body shape) 

From dimensional considerations,  we write 

AD = Rfg(Re,, k, body shape) 

where the  nose radius,  R, character izes  the  body s i ze .  Then we have 

We can wri te  

This l a t t e r  fo rm i s  equivalent t o  the  exponent i n  equation (7) of reference 34 
when p2,fp i s  taken as a constant f o r  a spher ica l  body shape. As  shown i n  
reference 34, with the  constant properly adjusted, a good f i t  i s  obta inedwi th  
the  drag data  f o r  a sphere a t  high speeds i n  a i r  and i n  helium. 

For p r a c t i c a l  calculat ions,  it seems preferable  t o  avoid evaluating A2. 
W e  can use the c l a s s i c a l  r e l a t i o n  between v i scos i ty  and m e a n  f r e e  path 
(eq. (119) of  r e f .  3) which s t a t e s  t h a t  v i scos i ty  i s  proport ional  t o  the  
product of Ap and a m e a n  molecular speed. We can express A,p, i n  terms of 
an undissociated value, A2Up2U; t h i s  involves using fp(pt2,  Ts) ,  the  r a t i o  of 
ac tua l  v i scos i ty  t o  the  undissociated (Sutherland) v iscos i ty .  (Values of fp  
f o r  air are tabulated i n  t a b l e  V I  of r e f .  35.)  We make use of the  Sutherland 
formula, 

t o  r e l a t e  t o  free-stream conditions, and we obtain the approximation 
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Using equation (106) of reference 27, we can wri te  I 

and put equation (C39) i n  the  form 

Subs t i tu t ing  t h i s  expression i n t o  equation (C37b) we have 

We l e t  

and we have 

nD = RDfy 
A 2  

where 

fy = f,(Re,, &, gas, body shape) (c45) 

For given f l i g h t  conditions and gas, 
( includes angle of  a t t a c k ) .  
much i n  t h e  passage through the  t r a n s i t i o n a l  regime; it can be expected t h a t  
generally fy 
We now approximate f y  as a constant f o r  t he  f l i g h t  of a given body and use 

fy w i l l  be a funct ion o f  body shape 
For many f l i g h t  cases ,  body shape does not change 

w i l l  not undergo a la rge  var ia t ion  i n  the t r a n s i t i o n a l  passage. 

f y  = 15(1 + EM-) (c46) 

where E14 can be assigned t h e  value zero f o r  a sphere i n  air, and t h e  con- 
s t an t ,  15, has been se lec ted  t o  match experimental da ta  as described below. 
We combine equations (c36), (C4-42, and (C46) t o  obtain our drag bridging 
equation. 
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The parameter, E14, can be  adjusted,  i n  p r inc ip l e ,  t o  account approximately 
f o r  the  e f f e c t s  of a l l  the  var iab les  i n  equation (C45) (during passage through 
the  t r a n s i t i o n a l  regime). Unless da t a  are a t  hand, E14 f o r  a i r  would nor- 
mally be assigned the  value zero, as f o r  a sphere. 
modest) dependence of E14 on body shape may not be known, the  values of CD 
ca lcu la ted  from equation (57) w i l l  a l so  depend d i r e c t l y  on body shape through 
CDC and E,. 
matching ca lcu la ted  values of drag with t h e  measured drag da ta  f o r  spheres i n  
a i r  of reference 36. 

Although the  (presumably 

The constant,  15, i n  equations (C46) and (57) w a s  determined by 

The comparison i s  shown i n  f igu re  9. Corresponding with 
2.4 r 

- EQUATION (571 

cllse EXPERIMENT, REF. 36 
3.8 5 MmS4.3 

2.0 

1.8 

CD 

1.6 

1.4 

1.2 

10 I O 0  I O 0 0  
1.0 - 

Rem 

Figure 9 . -  Comparison of ca lcu la ted  and measured 
values of the drag coef f ic ien t  f o r  spheres i n  
t h e  t r a n s i t i o n a l  regime. 

ca lcu la ted  values of CD f o r  f igu re  9, 
t he  values of RD used i n  equa- 
t i o n  (57) w e r e  converted t o  
because the  da t a  of reference 36 are 
p lo t t ed  with R e ,  as abscissa .  The 
da ta  of reference 36 were obtained i n  
a i r  a t  a nominal s e t t l i n g  chamber t e m -  
perature  of 300° K over a Mach number 
range from 3.8 t o  4.3.  The da ta  ind i -  
ca te  t h a t  any Mach number e f f e c t  on 
the  t r a n s i t i o n  of t h e  drag coe f f i c i en t  
i s  probably s m a l l .  The value, E l 4  = 0 
w a s  a l so  used t o  obta in  a good f i t  with 
sphere drag da ta  i n  a i r  reported i n  
reference 34 (not  shown). 

Re,, 

One se t  of 
these da ta  w a s  obtained i n  undissociated a i r  a t  a nominal s e t t l i n g  chamber 
temperature of 2500' K over a Mach number range from 15.96 t o  20.90. Another- 
set  of da t a  w a s  obtained i n  d issoc ia ted  a i r  over a range of hypersonic Mach 
numbers (11.34 t o  58.7) at a nominal s e t t l i n g  chamber temperature of 9000° K. 
A t h i r d  s e t  of sphere drag da ta  w a s  obtained i n  helium with hypersonic f l o w  
conditions.  The helium da ta  requi re  E14 M 2 f o r  a good f i t .  

The drag coe f f i c i en t ,  CD, i s  used only i n  equation (59) f o r  t he  quant i ty  
M/C$. 
body mass, My with the  s tagnat ion poin t  surface recession, X .  Any change i n  
the continuum drag coe f f i c i en t ,  CDC, can a l s o  be accounted f o r  i n  the  
empiricism of t h e  M/C$ evaluation. 

Equation (59) contains an empir ical  evaluat ion of t he  var ia t ion  of 

Example of Free -Molecule -Continuum Bridging 

The br idging r e l a t i o n s  developed i n  t h i s  appendix are e s s e n t i a l l y  
approximations t o  be  used f o r  t h e  condi t ions f o r  which they w e r e  derived. 
For o ther  conditions,  more r igorously developed equations may be avai lable ,  
as, f o r  example, f o r  cases  of shear i n  Couette flow such as reported i n  refer-  
ence 33. Under condi t ions f o r  which no w e l l  developed br idging r e l a t i o n s  
e x i s t ,  the  formulas given i n  t h i s  appendix are recommended as engineering 
approximations. The s t m c t u r e  of these  equations insures  t h a t  t he  equations 
have the  cor rec t  asymptotes, and t h i s  tends t o  l i m i t  inaccuracies .  
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Repre sen ta t  ive curves obtained 
from the br idging equations are  pre-  
sented i n  f igure  10. The ordinate  
quant i t ies ,  normalized t o  t h e i r  f r ee -  
molecule values, a r e  p lo t t ed  against  a 
rec iproca l  Knudsen number which w a s  
varied by varying the  nose radius,  R .  
Although the  bridging equations are  
general, t he  numerical inputs t o  the 
equations, and therefore  the curves 
obtained, will depend on the  individual  

.01 I I .o 10 IM) ~ 0 0 1 ~  case calculated.  The calculated curves 

A curve for t he  quant i ty  q (eq. (18)) 

product of  t he  quant i t ies ,  

w 

.01 L 

BODY RADIUS 
MEAN FREE PATH ’ i n  the f igure  are f o r  a tek-Lite glass .  

Figure 10. - Representative ca lcu la t ion  of 4fY 
bridging between free-molecule and i s  not shown; t h i s  quant i ty  1s the  

and Q~ 
(see eq. (22b)),  f o r  which the  curves a re  shown. 
r i g h t  s ide  of the  f igu re  are the continuum regime asymptotes f o r  the various 
quant i t ies ,  while on the  l e f t  s ide the free-molecule asymptote f o r  a11 quanti- 
t i e s  i s  uni ty .  It i s  noted t h a t  the  various quan t i t i e s  approach t h e i r  asymp- 
t o t e s  at d i f f e ren t  r a t e s .  
t he  quant i t ies  p lo t t ed  a re  not  even i n  the  same regime.) 
t r a t e s  probably t h e  most important fea ture  of t he  bridging r e l a t ions  used. 
They automatically place cont ro l  of the  various quan t i t i e s  i n  the appropriate 
control l ing regime, the free-molecule, t r ans i t i ona l ,  or continuum. 

continuum flow. 

The dotted l i n e s  on the  

(Under some conditions, one can consider t ha t  a l l  of 
The f igure  i l l u s -  

Curves corresponding t o  those of f igu re  10 can be p lo t t ed  f o r  other 
mater ia ls ,  and most of  the curves will be s i m i l a r ,  bu t  somewhat displaced. 
The heat t r ans fe r  curve (so) i s  approximately universal ;  the  drag curve (C,) 
i s  influenced considerably by body shape; the  other  curves (T;, Tw, F) w i l l  
vary somewhat with r e l a t i v e  r a t e s  of  vaporization (or reac t ion)  of t he  
mater ia l  being considered. 
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APPENDIX D 

USE OF COMPUTING PROGRAM 

The computing program can be  used t o  solve a v a r i e t y  of problems 
Data are a r b i t r a r i l y  read i n  subjec t  t o  the  involving surface-type ab la t ion .  

l imi t a t ions  given below i n  the  l i s t i n g  of  Input Data. 
sec t ion  METHOD OF THE NUMERICAL PROGRAM, t he  s t a b i l i t y  parameter, Z, should be 
< - 1/2 f o r  a l l  g r i d  poin ts  and a t  a l l  t i m e s .  
by  the  program so t h a t  i t s  values may be observed. 

A s  explained i n  the  

The quant i ty ,  Z, i s  p r i n t e d  out 

Computing Program Options 

The numerical computing program has s i x  major groups of opt ions as l i s t e d  
below. 

1. Running conditions 

(a) Normal wind tunnel,  KF = 1. 

(b) Rarefied wind tunnel, KF = 2. 
( includes a l l  wind tunnel  cases,  bu t  computing t i m e  i s  longer than 

with opt ion ( a ) )  

( e )  F l igh t ,  KF = 3. 

Both of the  wind-tunnel options,  (a) and (b ) ,  al low wind-tunnel condi- 
t i o n s  t o  be changed once, if  desired,  and a l so  f o r  t he  wind tunnel  t o  be  shut 
off.  
free-stream ve loc i ty  a re  changed, respect ively,  t o  Dcha (C7), Vcha ( C 8 ) ,  and 
V,cha (OKBAR). 
ca lcu la t ions  a re  continued while t he  model cools .  If these  changes a re  not 
desired,  t he  values of 
sponding t o  the  f i n a l  t i m e  l i n e  number, NF (see Time  Sketch below). 

A t  time, tcha (GAMAI), the  f ree-s t ream density,  enthalpy veloci ty ,  and 

A t  t i m e ,  teff (OMCO), t he  wind tunnel  i s  shut o f f ,  and the  

tcha  and teff can be set  l a rge r  than the  t i m e  cor re-  

2. I n t e r n a l  rad ia t ion  

(a) Transparent, KG = 1. 

(b)  Opaque, KG = 2. 

( e )  Semitransparent, KG = 3. 

3. Surf ace conditions 

(a) Evaporation o r  sublimation, KCH = 1. 

(b) Surface chemical react ion,  KCH = 2. 
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4. I n i t i a l  conditions f o r  f l i g h t  case (KF = 3);  (see appendix B) . 
(a) Normal en t ry  in to  an atmosphere using a computed exponential tempera- 

t u r e  p r o f i l e  i n  the body. 
values, D i  and A i  

With an assumed Twi(>  To) ,  the  i n i t i a l  
a re  computed by the  program, KDEL = 1. 

(b) Arbi t rary i n i t i a l  values of atmospheric density,  D i ,  and thermal 
thickness of exponential  temperature p r o f i l e  i n  the  body, Ai ,  
KDEL = 2. 

5. Back face  boundary conditions 

(a) Back face  aerodynamically exposed, KBAK = 1. 

(b)  Backing mater ia l  forming a heat sink, KBAK = 2. (For a heat s ink of 
zero heat capacity,  o r  an adiabat ic  back boundary, KBAK = 1 should 
be used.)  

6 .  Planet and atmosphere f o r  f l i g h t  case (KF = 3) 

(a) Earth en t ry  with the  ARDC atmosphere (approximated exponentially with 
3 programmed values of  scale  he ight ) .  
6440 km (Rp 

Ear th radius  programmed at 
i n  eq. ( 5 3 ) ) ,  KC5 = 1. 

(b)  Arbi t rary planet  with exponential atmosphere having a r b i t r a r y  scale  
height ( i n i t i a l ,  t w o  intermediate, and f i n a l  values),  KC5 = 2. 

Nomenclature of Computing Program 

The nomenclature used i n  the  computing program i s  i n  synibolic FORTRAN 
language. Separate l i s t i n g s  o f  input and output data  a re  shown below. 

Input Data 

Input da ta  are l i s t e d  below i n  t h e i r  order of card punching. Actual 
card formats are shown i n  the  Input Card Format Sketch. All input data are 
pr inted out by the  program i n  an i n i t i a l  readout (see Sample Case, below). 

Options , above. 
A quant i ty  l i s t e d  as an option i s  defined i n  the section, Computing Program S I  

Following the  de f in i t i on  of  a quantity,  the  value of an option se lec t ion  
The pa r t i cu la r  quant i ty  i s  not needed (and not used) f o r  other  may be shown. 

values of  the option se lec t ion .  Unused quan t i t i e s  are  normally assigned the  
value zero; i n  any case, the input card formats must be maintained. 

The m a x i m  number of g r id  poin ts  t o  be used i n  the f i n i t e  difference 
spacing i s  98; t h i s  i s  t h e  m a x i m  value f o r  t h e  quantity,  MF (see Spacing 
Sketch). 



E16 
T W I  

E 2 0  

SIGMA 

DELTW 

RHO24 

a6 

82 
810 
CZ 
E 2  

EIO 

RO 
ALLOW 

OM0 
E 2 2  

E 30 
E 3 6  - 

16 6 1  

OMCO OKEAR 6 

HS D C I  7 

E "  E'2 i 

bLL NUMBERS IN E9.3 FORMAT (DECIMAL POINT NEEOEO) 

Input Card Format Sketch 
M I ,  M2.  M3 ARE BREAK POINTS FOR CHANGING A?) 

FINE SPACED 
e.g..LN=4 

I 

GRID POINT NO=M I - M I  M2 M 3  MF 
e.9.2K2=4 (CALCULATED) (MAX = 981 

e. g.,M I = I 7  

INITIALLY AY, =A?),  

A?)2. A?)3, A?)4 ARE INCREMENTS USED IN FINITE DIFFERENCE EQUATION 

A?), INCREMENT USED FOR INTERPOLATIONS 

INITIAL VALUE OF LENGTH/ATl 51665 REOUIRED FOR 
TRANSPARENT CASE (KG= I 1  

Spacing Sketch 

NI. N2 ARE BREAK POINTS FOR CHANGING A t  

A 1  I = DDT I + A 12 = DDTP + A f3 = DDT3 4 
TIME LINE NQ=N I N I  N2 NF 

t ' I i  

AI l ,  AI,, At3, ARE INCREMENTS USED IN FINITE DIFFERENCE EQUATION 

Time Sketch 

ONE TIME LINE 

KMI, KMP. KM3 ARE BREAK POINTS FOR PRINTING INCREMENTS 1 (KCMII I (KCMP) 1 (KCM31 (KCMFI 

MF 
I 

GRID POINT NO. I KM I KM2 KM3 
KCMI. KCMP. KCM3. KCMF ARE GRID-POINT PRINTING INCREMENTS 

BETWEEN TIME LINES 
KNI, KNZ ARE BREAK POINTS FOR PRINTING INCREMENTS 

(KCNF) 

NF 

(KCNII 1 (KCNZ) 

TIME LINE NO. I KN I KN2 
KCNI, KCNZ, KCNF ARE TIME LINE PRINTING INCREMENTS 

Pr in t ing  Sketch 

Card A 
(All numbers a re  in tegers  i n  14 FORMAT) 

KF Running condition opt ion 

KG I n t e r n a l  r ad ia t ion  opt ion 

N1 Time l i n e  number a t  which the  f i n i t e  t i m e  increment A t  (DTT) changes 
from At,  (DDT1) t o  A t 2  (DDT2) (see T ime  Sketch).  

N2 Time l i n e  number a t  which the  f i n i t e  time increment A t  (DTT) changes 
from At, (DDT2) t o  At3 (DDT3) (see Time Sketch) ,  

NF F i n a l  time l i n e  nuniber (see Time  Sketch).  

K 2  Defined by Aq, = (K2)  Aql ( o r  Ay2 = (K2) Ay,). Can be 1 for opaque 
and semitransparent cases (KG = 2, 3 ) ,  bu t  must be at least  2 and even 
for t ransparent  case (KG = 1) (see Spacing Sketch).  
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K3 

K 4  

LIN 

M2 

M 3  

M.F 

J1 

J2 

KC 5 

KCT 

KM1 

KM2 

Defined by Aq, = (K3)  Aq, (or Ay, = ( K 3 )  Ay,). Can be 1 (see  

Defined by Aq, = (K4)  Aq, (or Ay4 = (K4)  Ay,). Can be 1 (see 

Spacing Sketch).  

Spacing Sketch).  

Increments of Aq, spacing over which Aq, spacing e x i s t s .  
Must be > - 4 (see Spacing Sketch).  

Grid poin t  at which space increment changes from 
(see Spacing Sketch).  

Aq, t o  Aq, 

Grid poin t  at which space increment changes from 
(see Spacing Sketch) . Aq, t o  Aq4 

Grid poin t  a t  back f ace .  

Order of in te rpola t ion  f o r  

M a x i m u m  value = 98 (see Spacing Sketch). 

T (TE) i n  t he  f i n e  spaced (Aq,) 
region. 

Order of in te rpola t ion  f o r  

Planet  and atmosphere opt ion f o r  f l i g h t  case (KF = 3 ) .  

A, (YDEL). 

M a x i m  number of i t e r a t i o n s  t o  determine f r o n t  face  temperature, 
Tw, within allowable e r r o r  se lec ted  ( A L L O W ) .  
ca lcu la t ion  will s top .  

If exceeded, 

Grid poin t  a t  which p r in t ing  i n t e r v a l  on one time l i n e  changes 
from KCMl t o  KCM2 (see  P r in t ing  Sketch) .  

Grid poin t  at which p r i n t i n g  i n t e r v a l  on one t i m e  l i n e  changes 
from KCM2 t o  KCM3 (see P r in t ing  Sketch) .  

Card B 
(All numbers are in tegers  i n  I4 FORMAT) 

KM3 Grid poin t  a t  which p r in t ing  i n t e r v a l  on one time Line changes 
from KCM3 t o  KCMF (see P r in t ing  Sketch).  

P r in t ing  in t e rva l s  of g r i d  poin ts  (see P r in t ing  Sketch).  KCM3 , KCMF 

K N 1  Time l i n e  number a t  which t i m e  l i n e  p r in t ing  i n t e r v a l  changes 
from K C N l  t o  KCN2 (see P r in t ing  Sketch).  

m 2  Time l i n e  number a t  which t i m e  l i n e  p r in t ing  i n t e r v a l  changes 
from KCN2 t o  KCNF (see P r in t ing  Sketch) .  



I- KCNl,KCN2, 
KCNF 

KCH 

KDEL 

KBAK 

Time l i n e  p r i n t i n g  i n t e r v a l s  (see P r in t ing  Sketch).  

Surface condition option. 

I n i t i a l  condi t ion opt ion for f l i g h t  case (KF = 3) .  

Back face boundary condition opt ion.  

For cards 1-11, the re  are normally 8 numbers per  card, each number i n  
E9.3 FORMAT. 

A 1  

A2 

A3 

A 4  

B5 

B6 

B7 

€23 

B1.3 

B14 

B15 

s i 6  

c1 

c2  

c3 

c4 
66 

A l ,  equation ( 2 7 )  

A2, equations (lo),( 11) 

A3, equations (32),(35) 

A4, equation (15) 

Bg, equation ( 8 5 )  

Be,  equation (86) 

B7, equation ( 8 6 )  

T O  

Card 1 

B1 

B2 

B3 

B 4  

Card 2 

B9 

B10 

B 1 1  

B12 

Card 3 

P 

B2, equation ( 8 4 )  

B3, equation (84) 

B4, equation ( 8 5 )  

B,, equation ( 8 7 )  

E, equation (29) 

B11, equations (28), ( 3 0 )  

hv 

EFF 

B14, equation (85) 

EBF 

B ~ ~ ,  equations ( 4 @ ,  (471 ,  (51); B16 = 1 f o r  t ransparent  case (KG = 1); 

f o r  opaque case (KG = 2 ) ;  E- for semitransparent case (KG = 3) 

for opaque and semitransparent cases (KG = 2, 3 )  

B16 = 0 for opaque and semitransparent cases (KG = 2, 3) 

C 1 ,  equation ( 6 0 )  

c2, equation ( 6 0 )  

~ 3 ,  equations (561,  ( 5 9 )  

~ 4 ,  equations (56>, (59) 
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I 
I 
E" JU 

c5 

i c6 

i c7 
L 
! 
i 
I c8 

E l  

E2  

E3 

E 4  

E5 

E6 

E7  

E8 

E 1.3 

E14 

E15 

E 16 

SIGMA 

RO 

OMCO 

0" 

Card 4 

shl, f o r  f l i g h t  case (KF = 3 ) ,  and (KC5 = 2 ) .  

cg, equation (15) 

L/Dr, equation (53) f o r  f l i g h t  case (KF = 3 ) ;  Dcha f o r  wind tunnel  
cases  (KF = 1, 2 ) .  

g /io5, equation (53b) f o r  f l i g h t  case (KF = 3 ) ;  Vcha f o r  wind 
'tunnel cases  (KF = 1, 2 ) .  

E l ,  equation (86) 

E2, equation (87) 

E3, equation (88) 

E*, equation ( 4 4 )  

Card 5 

E5, equation (44) E9 E,, equation (58) 

Eg, equation (44) E 10 E l o ,  equation (88) 

ET, equation (26) E 11 E l l ,  equation (61) 

Ea, equations (34),  (35) E 12 E12, equation (61) 

Card 6 

E13, equation (50) 

E149 equations (57) ,  (59) 

E l s ,  equation ( loa)  

E16, equation (12) 

0 = 1.369~10-l~ 

R i ,  equation (60) 

(M/CDCA)i, equation (59) f o r  f l i g h t  case (KF = 3 ) ;  toff f o r  wind 
tunnel  cases  (KF = 1, 2 ) .  

E, equation (12) f o r  f l i g h t  case (KF = 3) ;  Voocha f o r  wind tunnel  
cases (KF = 1, 2 ) .  

. . . . . . . 



Card 7 

C H I 1  X,, equation (12) 

VCINFI 

GAMAI 

TWI 

DELTW 

ALLOW 

HS 

D C I  

D D T l  

DDT2 

DDT3 

DY 1 

m021 

OM0 

DELT J 

Vwi f o r  f l i g h t  case (KF = 3) ;  f o r  wind tunnel  cases (KF = 1, 2 ) ,  
Vw = VCINFI u n t i l  t > tcha or t > torr. 

yi  

Twi ;  > To 

f o r  f l i g h t  case (KF = 3) ;  tcha f o r  wind tunnel  cases (KF = 1, 2).  

f o r  en t ry  f l i g h t  case (KF' = 3, KDEL = 1). 

I n i t i a l  guess f o r  incrementing T w i  i n  i t e r a t i n g  f o r  Tw i n  the 
second t i m e  l i n e  (can be zero) .  

ea2 

hs f o r  wind tunnel  cases (KF = 1, 2 ) ;  constant a t  read-in value 
u n t i l  t > t,ha or t > teff. 

Di f o r  f l i g h t  case (KF = 3 ) ;  read i n  only when KDEL = 2; with 
KDEL = 1, D i  
(KF = 1, 2) ,  read i n ;  D = D C I  u n t i l  

i s  calculated by the  program. For wind tunnel cases 
t > tCha or t > teff. 

Card 8 

At,  (see Time Sketch) .  

A t 2  ( see  Time Sketch).  

At3 (see Time Sketch).  

Av, = i n i t i a l  value of Ay, ( see  Spacing Sketch);  i n i t i a l  value of 
length/A-q, <_ 1665 i s  required f o r  t he  t ransparent  case (KG = 1). 

(KF = 3) ,  p2, i s  calculated continuously (eq. (61) ) .  
p21; read i n  f o r  wind tunnel cases (KF = 1, 2 ) ;  f o r  f l i g h t  case 

RBF, equation (48);  used only when back face i s  aerodynamically 

E17, equation (60) 

El8., equations (56),(59), used for f l i g h t  case (KF' = 3 ) .  

exposed (KBAK = 1). 

Card 9 

I n i t i a l  guess for incrementing Tw i n  i t e r a t i o n  f o r  time l i n e s  3, 
4, 5; should not be zero. 

E19, equation (49); used when back face  i s  aerodynamically exposed 
(mAK = 1). 
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m Rb, equations (a), (50); used when back face  i s  aerodynamically exposed 
(mAK = 1). 

E20 EzO, equation (87) 

E 2 1  ACq = 1. 

E22 Acm, equation (36), (KF = 2, 3 ) ;  i f  unknown use Acm = 1. 

E23 

Acq, equation (l7), (KF = 2, 3 ) ;  i f  unknown use 

A&, equations (39c, 39d), (KCH = 1); if  unknown, evaluate using 
A,, = 1 i n  equation (39c).  

E24 B, equation (39e), (KCH = 2 ) .  

Card 10 

E25 

~ 2 6  C, equation ( 5 l ) ,  (mAK = 2) ; ( i f  c = 0, use KBAK = 1 and OM0 = 0 ) .  

E27 

ET, equation (39e), (KCH = 2 ) .  

- 

Rp, equation (53) ,  f l i g h t  case (KF = 3) ,  and (KC5 = 2 ) .  

- , f l i g h t  case (KF = 3) ,  and (KC5 = 2 ) .  

E29 - f l i g h t  case (KF = 3) ,  and (KC5 = 2 ) .  

E30 Sh2, f l i g h t  case (KF = 3), and (KC5 = 2 ) .  

E3 1 Sh3, f l i g h t  case (KF' = 3) ,  and (KC5 = 2 ) .  

E32 Shiy i n  equation (BlO), f l i g h t  case (KF = 3) ; used only when KDEL = 1 

Po02 E 28 

and KC5 = 2; has a r b i t r a r y  value, but may equal Shl ( C 5 ) .  

Card 11 

E33 Es3, equation (45), semitransparent case (KG = 3 ) .  

E34 A i ,  i n  equation (B1) ; read i n  only f o r  f l i g h t  case (KF = 3) ,  with 
a r b i t r a r y  i n i t i a l  conditions ( D E L  = 2 ) .  Otherwise the  program 
computes A i  from equation (B2b). 

E3 5 E35, equation (28) 

E36 ~ 3 ~ ,  t ransparent  case (KG = 1); equation (97);  E 3 6  = 1.0 has given 
good energy balances. 

E37 E37, t ransparent  case (KG = 1); equation (98);  E37 = 1.0 has given 
good energy balances. 

E38 ES8, f l i g h t  case ( X F  = 3) ; equation (55) .  

E39,E40 (Open) 



Card 12 

This card i s  only required f o r  t he  t ransparent  case (KG = 1). The format 
f o r  t h i s  card i s  shown i n  t h e  Input Card Format Sketch. The FORTRAN quanti-  
t i e s  ALPHA, ALPHA.2, EMAX, RN are i n  FORMAT E9.3; I T  i s  i n  FORMAT 14.  

AIJ?HA a, equation (41) 

ALPHA2 a2, equation (41) 

EMAX E-, equation (42) 

RN n, equations (41, 42) 

I T  Spacing of ca lcu la t ion  and p r in t ing  of  F and g = dF/ay i n  the  
f i n e  spaced region (see Spacing Sketch).  
f ac to r  of K2 but  must be l e s s  than K2; f o r  example, i f  K 2  = 6, 
I T  can be I, 2, or 3. I T  = 3 means t h a t  F and g are pr inted 
out for every t h i r d  g r id  point  i n  the  f i n e  spaced region; i n  the 
remaining regions they are pr in ted  f o r  every g r i d  point .  The 
value of I T  a f f e c t s  somewhat the  accuracy of the  f i n i t e  d i f f e r -  
ence and energy balance calculat ions.  I T  = 1 gives the  grea tes t  
accuracy. A l a rge r  value of I T  decreases accuracy while reducing 
computing time. 

I T  must be an integer  

Output Data 

A l l  input da ta  are pr in ted  out  i n  an i n i t i a l  output format ( see  Sample 
Case below) . 
pr in ted  i n  an i n i t i a l  output (see Sample Case below). 

I n  addition, the following quan t i t i e s  (some calculated)  are  

QO 11 qwi 

Q02I qRi 

Q O I  

TTI ti; equation (B4) f o r  wind tunnel  cases (Ki? = 1, 2); equals zero 
f o r  f l i g h t  case (KF’ = 3 ) .  

DELI Ai ;  equation (B2b) f o r  wind tunnel  cases (KF = 1, 2) and f l i g h t  
case (KF = 3) with D E L  = 1; f o r  f l i g h t  case with KDEL = 2, Ai 
equals E34. 

D C I  D i ;  read i n  quant i ty  for wind tunnel cases (KF = 1, 2) and f l i g h t  
case (Ki? = 3) with KDEL = 2; from equation (B10) f o r  f l i g h t  case 
with KDEL = 1. 

RHO pm = ~ / 1 2 2 6  ( f o r  t h i s  pr in t ing  D = D i ) .  

M1 M l  = 1 + (K2)(LN); see Spacing Sketch. 
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The spacing o f  pr in t ing  in t e rva l s  i s  a r b i t r a r i l y  se lec ted  ( see  subsection 
t h e  Input D a t a  and the  P r in t ing  Sketch).  

following quan t i t i e s  appear. 
For each t i m e  l i n e  pr in ted  out, 

(See section, Sample Case, below for format. ) 

N 

TT 

R 

SNGMA 

RHO 

vc 
v c m  
PSI 

PSIBAR 

N, time l i n e  rider 

t 

R 

s i n  y 

QOC %C 

QOm 

QO 

QOO 

PSQOO 

C E I U  

PSQOF 

QP 

TDEL 

YDEL 

TMDL 

RHO21 

TAUCP 

TA- 

T A W  

s, 

goo 

A 

p2 1 

7wc 
t 

7' wFM 

OMC 

XIP 

C H I  

DTT 

PDP 

P 

PHI 

A2D 

FBAR 

M/C+ 
- vsr = dX/dt 

X 

A t  

6 " 

P 

cp 

PLSlD 
P 

ADGABS 

AGABS 

EPSRER 

EPSW 

FRS 

m2 

c om 
R I N  

VAP 

STOR 

VC ON 

uc ON 

RESID 

ERR 

"g 

€BF 

€FF 

FRS 

Pt2 

Qc0n 

'rad 

Qvay 

Qs t o r  

Qvcon 

%con 

Qre s 

e rr 



DTDYW 

%on PSQO 

qr ad FRW 

DVAF %rap 

DSTOR qstor ,  except at t = ti, 
when DSTOR = ( s tored  
energy a t  t i ) / O t ;  s tored  
energy at ti = absolute 
value of second term i n  
equation (82d) .  

VARG 

YTNT 

DRES 

KC 

Tw 

VWC 

VWFM 

vw 

%con 

%con 

qre  s 

KC, number of i t e r a t i o n s  
required t o  obta in  T,. 

T W  

I Twc I 

A l s o  f o r  each t i m e  l i ne ,  the  following arrayed quan t i t i e s  p r i n t  out i n  
columns for the  se lec ted  p r i n t  spacing of g r id  points  (see Pr in t ing  Sketch 
and Sample Case below f o r  f o r m a t ) .  

M M (g r id  point  number) 

m T 

XRAT X r  

FR F 

Z Z, must be < - 1/2 f o r  s t a b i l i t y .  

Sample Case 

To i l l u s t r a t e  t he  use of t he  computing program, a sample case has been 
selected which describes the  en t ry  of a t ransparent  t e k t i t e  in to  the  Earth 's  
atmosphere. Figure 11 shows the  input d a t a  f o r  t he  sample case; f i gu re  12 
shows the  p r in t ing  out  of the input data  and the i n i t i a l  calculated values; 
f igure  13 shows the p r in t ing  out  f o r  a typ ica l  time l i n e .  



5 IO I5 20 25 30 35 40 45 50 55 60 65 ro 73 ea 
3 I 41 8 1  4 5 1  6 2 2 4 3 1  4 1  5 1  2 2 I 3 0 0  2 5  2 7  A 

2 9  I I I I 3 5 2  4 5 2  3 5 0  2 5  2 5  I I I B 

. 9 5  I .  I .45 1 . 1 1  2.4 5 7 8 0 0 . ,  19. I 2 7 6 2 0 .  I 
9.09 . 2 2 8  6 5 0 0 .  3 0 0 .  . 0 0 4  I . 7 2  5 . 9 5  3 0 5 0 .  2 
0. 2 6 2 .  0. I .  -.5 - I  2 . 3  . 3  - 1 2 . 3  3 
0. . I 8  0 .  , 0 0 9 8  . 0 0 0 0 6  - . 4 5  . 0 0 0 0 2  0 . 7 6 0 E - 0 6  4 
.5 7. 1.4 . 2 8  1 . 1  . 2 3  I .  . 0 0 0 1  5 
0. 0. 0. 0. 1 .  3 6 9 E -  1 2 . 8  I 6  2 . 6  I .  6 
I .  1 1 .  - 3 0 .  5 0 0 .  0. . 0 1  0. 0. 7 
. 0 2  . 0 2  . 0 2  . 0 0 5  0. . 0 3  - . 3 5  -. 3 2  

p .  0. 0 6  I .  I .  .5 I I  I 
1 1  A . . 9 1  1 . 5  I 1 2  I 

Figure 11. - Input data f o r  sample case. 



A 1  A2 
8 6  8 7  
815 8 1 6  
C8 E l  

A3 
8 8  
c 1  
E2 

A 4  
8 9  
c 2  
E 3  
E l 2  
C H I 1  

DDT2 
R B  
E 2 8  

81  
810 
c 3  

02 0 3  
011 8 1 2  
c 4  c 5  

8s 
8 1 3  
C6 
E 7  
E16  

DELTW 
OM3 
E23  
E 3 2  

85 
814 
c 7  
E8 

SIGMA 
ALLOY 

E17  
E 2 4  
E33  

E 4  
E 1 3  
V C I N F I  
OD13 
E23 
E29  
E 3 8  

E5  E 6  
E 1 4  E 1 5  
GAMA1 TU1 
OY1 RHO21 
E 2 1  E 2 2  
E30  E 3 1  
E 3 9  E 4 3  

.~ ~. 
E 9  E 1 D  
R 3  OMCb 
HS oc I 
E l 8  OELTJ 

_ _  
Ell 
OKBAR 

D D T l  
E 1 9  

E25 E 2 6  E27  

:.26335€-53 
D - l l O D 2 E  C 1  U.23301E-Cn L).lDJDJE 01  1.DJODJE-34 . >.1369DE-11 
D.8161)DE OD E.263CDE 3 1  5 . l D 3 3 J E  31  3.10033E 31  3 . 1 1 3 3 i E  Z P  - i ;3DS3JE 1 2  t i 5 D 3 D O E  33 5; 1.52303E-22 
0. D. O.230D)E-31 3.23003E-21 J.2DDD2E-01 0.5J3D3E-32 3. 3.33039E-31 -:.35JDJE-E3 

-D-32053E-DD 3.403DJE Dl O - l O D l > E  01 D.816fJE 35 -5 .  u. lJO3SE a 1  ?.1333DE D 1  3.13305E 3 1  - 3 .  
-0 .  -” .. -6. -0. -SI. -C. -”. -3. -3. 
-I. 0.630DDE-?l L.13303E 31  3.1330DE 31 D.5DODOE OD -is -a. 

KN1 KNZ KCN1 KCNZ KCNF KCH KDEL K0AK 

3 5 2  4 5 2  353 2 5  25 1 1 1 

0.75471E 11 0.26723E-OD D.78143E D1 3.  >.848DlE-31 C.47533E-d3 0.38746E-06 2 5  

KF  KG N l  NZ NF KZ K3  K 4  LN M2 M 3  MF J1 J Z  KC5 KCT K M l  KM2 KM3 KCMl KCM2 KCM3 KCMF 

3 1 41 8 1  451  6 2 2 4 31 41 51 2 2 1 393 25 2 7  2 9  1 1 1 1 

0011 0321 o s 1  TT I D E L I  DC I RHO MI 

ALPHA ALPHA2 EMAX RN I T  
14.DUO 14.GOJ 0.911 1.530 1 

Figure 12.-  Pr in t -out  of input  d a t a  and i n i t i a l  ca lcu la ted  values for samgle case 

N TT 
OLC PiIFM 

YOEL TMDL 
DTT POP 

R SNGMA 
09 OD? 

RHO 
PSO33 
TAUFMP 

AZD 
CDIY 
PSOS 
VYC 

vc 
CKTU 
TAUYP 
FEAR 
R I N  
FRY 
VUFH 

VCINF 
PSPJF 

OMC 
F I N 1  
VAP 

DVAP 
V d  

P S I  PSIBAR 
OR TDEL 
X I P  C H I  RHDZL TAUCP 

P P H I  
FRS PTZ 
ERR DTDYY 

ADGABS AGAEIS 
S TOR WCON 

DSTDR VARG 
EPSRER EPSLN 

UCON RESID 
YTNT DRES KC T Y  

4 5 1  
0.57534E 03 
J . 4 9 8 J l E - 0 2  
O.ZJJ03E-31 
0.8725DE DL, 
0.73396E 03 
J.19381E 5 3  

M 
1 
2 
3 
4 
5 
6 
7 

9.QD3 
0.32453E 2 4  
9.25649E 04 
3.21718E U 6  
5.26334E-D3 

-3.13639E 0 2  
C.777D5E GG 

Y 
3.  
D . O C 4  

J.1148;E 31 -3.49531E-C3 
b.57313E 03 D.57393E 03 
9.14784E 3 2  J.14973E 55 

3.43194E-C3 
1.36646E 23 
3.31446E 26 

3.82868E C 1  
C - l Y O 3 u E  J 1  
C.14973E 7 5  

2.82566E I 1  
J.3664bE 03 
3.13942E 5 1  

3.63738E 0 3  3.63955E 2.7 
1.17539E 11 ..51588E-11 
3.13029E->J 2.51589E 31 

D.15349E-DU 0.13211E 3 3  3.13211E > 3  
3.22147E 33 0.13997E 33 
3.47626E 31 3.33219E 32  

-G. l2594E ,3 
- .~ .23915E 2 

;.39214E-’? 
XRAT 

J.36834E 5 1  
t . l 7 @ 4 6 E  ’1 
3.15624E 3 1  
3.89170E L‘.? 
F. lC385E ; 1  
5.9988UE 7: 
C.lU311E .1 

-6 .13137E D3 
- 3 , 1 7 9 3 5 E - 3 1  

3.73194E 14 
P a 4 b 3 > 7 E  34 

G 

3.341CIE-D? 
-9.47963E 2 5  
D.27743E 34 

3.11592E C.2 
0.61359E 21 

UDB 

D.17573E 0 4  
3.38467E C3 
J . 1 8 7 6 2 E - L l  

VBAR 
-2.17935E-31 
-1.77943E-51 
- f~ . l1511E-DG 
-?.13211E-D5 
-0.128P4E-31 
-r.13j33E-3R 
-0 .12981E-00 

-5.57964E 03 

1 

2774.333 
TE FR 

-3.19654E 
3.24976E 2612.848 

D.OD8 
3.311 
D e 2 1 5  
0.319 
3.023 

2462.054 
2 3 2 1 . 9 5 2  
2192.542 
2 ~ 7 3 . 8 2 3  
1965.796 

3.31651E 0 4  3.16815E 
P.2D567E 0 4  J.26822E 
f .12622E :4 3.32724E 
u.69544E 33 3.36633E 

3.38181E 3.29645E 53 
8 J.J26 1868.463 D.21479E-02 - i .13512E-3D 3.99988E JJ : .21975E D2 ?.39323E 52  L. 
9 D.03E 1781.816 3.1139PE-J1 - “ .13034E-53 0.1)F:ZE .1 -3.16227E D3 ;.38463E 32  3.  

.13259E-23 D.l i lG33E ‘ 1  -3.27715E > 3  0.37886E > Z  5 .  

.13JDeE-rD b~ v’..-’”-- . 

Figure 13 . -  Pr in t -out  of 2 t y p i c a l  time l i n e  for sample case. 
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